5 resultados para Localities extracéntricas
em Brock University, Canada
Resumo:
"Enlarged edition."
Resumo:
Sedjrrlents deposited in the Late Quaternary marine sUbrnergences that follov'ted the deglaciation of Ontario} Quebec., and 6ritlst-1 Columbia often contaln an abundant nlarlne invertebrate macrofauna. The rnacrofauna~ dotYllnated by aragonitic pelecypods} is fully preserved In their original mineralogy and cherrlistry 8S deternl1ned by x-ray dlffractlon., scannlng electron tl-,lcroscoDY., trace and r1l1 nor elet11ent analyses and stable isotopes. Ttle trace elernent and stable isotope geochen-Ilstry of chernlcal1y unaltered aragorlitlc molluscs can be used to determine paleoter1-lperatures and paleosallnltles." HO\Never} corrections need to be tllade \fvtlen deterrTIlnlng oxygen-isotope paleotenlperi:ttures due to the lnfluence of isotopically 11gtlt glaciol rneltv-laters and reduced sal1nltles. Ttle eastern Laurentide Ice Sheet probably had an o:~ygen lS0tOP1C composition as low as -8e) 0/00 (Sr1[IW). In additl0fl} corrections need to be rnade to the carbonlsotope values, before salinity deterrnlnatlons are t11ade., due to the reJjuctlon of the terrestrial carbon bl0rnass during glac1al maxlrna. Using geochernlcal data frot11 537 marlne n-'8crolnvertebrates frorTI 72 localities in soutt-,easter Ontarl0 and southern Quebec, it tras been deterrnined that the Late Quaternary Char1lplaln Sea \N6S density stratified along salinity and temperatlJre gradients. The deep-\h/aters of tt-,e Charnplaln Sea tlad salinities that ranged frorn 31 to 36 ppt} and terrlperatures of 00 to 5°C. Conversely.. the st1alloy./-\f*later regirrle of ttle Ctlarnplaln Sea tlad sal1nltles that ranged fron-, 24 to 33 ppt} Y.tltt1 terrlperatures ranglng from 5° to 15°C. Tr,8 rrlajorl rnlnor1 and trace e1et1-,ent geochernlcal analysls of 155 marine lnvertebrates frorn 4 10C611t1es of tt-,e Late Quaternary Ft. Langley Forrnatlon and Capl1ano Sedlments;. souttl\Nestern Brltlsh Columblal suggest l t~lat the 'waters of the o-,arlne lnundation that fol1o....ved the retreating Cordl11eran Ice Sheet had sal1nltles ranglng frorn 32 to 3f. DPt.
Resumo:
Owing to the fact that low-Mg calcite fossil shells are so important in paleoceanographic research, 249 brachiopod, cement and matrix specimens from two neighboring localities (Jemez Springs and Battleship Rock), of the Upper Pennsylvanian Madera Formation were analyzed. Of which, about 86% of the Madera brachiopods are preserved in their pristine mineralogy, microstructure and geochemistry. Cement and matrix samples, in contrast, have been subjected to complete but variable post-deposition~1 alteration. It is confirmed that the stable isotope data of brachiopods are much better than that of matrix material in defining depositional parameters. Because there is no uniform or constant relationship between the two data bases (e.g., from 0.1 to 3.0%0 for 0180 and from 0.2 to 6.7%0 for 013C in this study), it is not possible to make corrections for the matrix data. Regarding the two stratigraphic sections, elemental and petrographic analyses suggest that Jemez Springs is closer to Penasco Uplift than Battleship Rock. Seawater at Jemez Springs is more aerobic, and the water chemistry is more influenced by continental sources than that at Battleship Rock. In addition, there is a relatively stronger dolomitization in the mid-section of the Battleship Rock. Results further suggest that no significant biogenic fractionation or vital effects occurred during their shell secretion, suggesting that the Madera brachiopods incorporated oxygen and carbon isotopes in equilibrium with the ambient seawater. This conclusion is not only drawn from the temporal and spatial analyses, but also supported by brachiopod inter-generic comparison (Composita and Neospirifer) and statistical analysis ( t-test).
Resumo:
The resurgence of malaria in highland regions of Africa, Oceania and recently in South America underlines the importance of the study of the ecology of highland mosquito vectors of malaria. Since the incidence of malaria is limited by the distribution of its vectors, the purpose of this PhD thesis was to examine aspects of the ecology of Anopheles mosquitoes in the Andes of Ecuador, South America. A historical literature and archival data review (Chapter 2) indicated that Anopheles pseudopunctipennis transmitted malaria in highland valleys of Ecuador prior to 1950, although it was eliminated through habitat removal and the use of chemical insecticides. Other anopheline species were previously limited to low-altitude regions, except in a few unconfirmed cases. A thorough larval collection effort (n=438 attempted collection sites) in all road-accessible parts of Ecuador except for the lowland Amazon basin was undertaken between 2008 - 2010 (Chapter 3). Larvae were identified morphologically and using molecular techniques (mitochondrial COl gene), and distribution maps indicated that all five species collected (Anopheles albimanus, An. pseudopunctipennis, Anopheles punctimacula, Anopheles oswaldoi s.l. and Anopheles eiseni) were more widespread throughout highland regions than previously recorded during the 1940s, with higher maximum altitudes for all except An. pseudopunctipennis (1541 m, 1930 m, 1906 m, 1233 m and 1873 m, respectively). During larval collections, to characterize species-specific larval habitat, a variety of abiotic and biotic habitat parameters were measured and compared between species-present and species-absent sites using chi-square tests and stepwise binary logistic regression analyses (Chapter 4). An. albimanus was significantly associated with permanent pools with sand substrates and An. pseudopunctipennis with gravel and boulder substrates. Both species were significantly associated with floating cyanobacterial mats and warmer temperatures, which may limit their presence in cooler highland regions. Anopheles punctimacula was collected more often than expected from algae-free, shaded pools with higher-than-average calculated dissolved oxygen. Anopheles oswaldoi s.l., the species occurring on the Amazonian side of the Andes, was associated with permanent, anthropogenic habitats such as roadside ditches and ponds. To address the hypothesis that human land use change is responsible for the emergence of multiple highland Anopheles species by creating larval habitat, common land uses in the western Andes were surveyed for standing water and potential larval habitat suitability (Chapter 5). Rivers and road edges provided large amounts of potentially suitable anopheline habitat in the western Andes, while cattle pasture also created potentially suitable habitat in irrigation canals and watering ponds. Other common land uses surveyed (banana farms, sugarcane plantations, mixed tree plantations, and empty lots) were usually established on steep slopes and had very little standing water present. Using distribution and larval habitat data, a GIS-based larval habitat distribution model for the common western species was constructed in ArcGIS v.l 0 (ESRI 2010) using derived data layers from field measurements and other sources (Chapter 6). The additive model predicted 76.4 - 97.9% of the field-observed collection localities of An. albimanus, An. pseudopunctipennis and An. punctimacula, although it could not accurately distinguish between species-absent and speciespresent sites due to its coarse scale. The model predicted distributional expansion and/or shift of one or more anopheline species into the following highland valleys with climate warming: Mira/Chota, Imbabura province, Tumbaco, Pichincha province, Pallatanga and Sibambe, Chimborazo province, and Yungilla, Azuay province. These valleys may serve as targeted sites of future monitoring to prevent highland epidemics of malaria. The human perceptions of malaria and mosquitoes in relation to land management practices were assessed through an interview-based survey (n=262) in both highlands and lowlands, of male and female land owners and managers of five property types (Chapter 7). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. In conclusion, this interdisciplinary thesis examines the occurrence of Anopheles species in the lowland transition area and highlands in Ecuador, from a historic, geographic, ecological and sociological perspective.
Resumo:
Larval habitat for three highland Anopheles species: Anopheles albimanus Wiedemann, Anopheles pseudopunctipennis Theobald, and Anopheles punctimacula Dyar and Knab was related to human land uses, rivers, roads, and remotely sensed land cover classifications in the western Ecuadorian Andes. Of the five commonly observed human land uses, cattle pasture (n = 30) provided potentially suitable habitat for A. punctimacula and A. albimanus in less than 14% of sites, and was related in a principal components analysis (PCA) to the presence of macrophyte vegetation, greater surface area, clarity, and algae cover. Empty lots (n = 30) were related in the PCA to incident sunlight and provided potential habitat for A. pseudopunctipennis and A. albimanus in less than 14% of sites. The other land uses surveyed (banana, sugarcane, and mixed tree plantations; n = 28, 21, 25, respectively) provided very little standing water that could potentially be used for larval habitat. River edges and eddies (n = 41) were associated with greater clarity, depth, temperature, and algae cover, which provide potentially suitable habitat for A. albimanus in 58% of sites and A. pseudopunctipennis in 29% of sites. Road-associated water bodies (n = 38) provided potential habitat for A. punctimacula in 44% of sites and A. albimanus in 26% of sites surveyed. Species collection localities were compared to land cover classifications using Geographic Information Systems software. All three mosquito species were associated more often with the category “closed/open broadleaved evergreen and/or semi-deciduous forests” than expected (P ≤ 0.01 in all cases), given such a habitat’s abundance. This study provides evidence that specific human land uses create habitat for potential malaria vectors in highland regions of the Andes.