14 resultados para Lipid source
em Brock University, Canada
Resumo:
One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.
Resumo:
There is much evidence to support an age-related decline in source memory ability. However, the underlying mechanisms responsible for this decline are not well understood. The current study was carried out to determine the electrophysiological correlates of source memory discrimination in younger and older adults. Event-related potentials (ERPs) and continuous electrocardiographic (ECG) data were collected from younger (M= 21 years) and older (M= 71 years) adults during a source memory task. Older adults were more likely to make source memory errors for recently repeated, non-target words than were younger adults. Moreover, their ERP records for correct trials showed an increased amplitude in the late positive (LP) component (400-800 msec) for the most recently presented, non-target stimuli relative to the LP noted for target items. Younger adults showed an opposite pattern, with a large LP component for target items, and a much smaller LP component for the recently repeated non-target items. Computation of parasympathetic activity in the vagus nerve was performed on the ECG data (Porges, 1985). The resulting measure, vagal tone, was used as an index of physiological responsivity. The vagal tone index of physiological responsivity was negatively related to the LP amplitude for the most recently repeated, non-target words in both groups, after accounting for age effects. The ERP data support the hypothesis that the tendency to make source memory errors on the part of older adults is related to the ability to selectively control attentional processes during task performance. Furthermore, the relationship between vagal tone and ERP reactivity suggests that there is a physiological basis to the heightened reactivity measured in the LP response to recently repeated non-target items such that, under decreased physiological resources, there is an impairment in the ability to selectively inhibit bottom-up, stimulus based properties in favour of task-related goals in older adults. The inconsistency of these results with other explanatory models of source memory deficits is discussed. It is concluded that the data are consistent with a physiological reactivity model requiring inhibition of reactivity to irrelevant, but perceptually-fluent, stimuli.
Resumo:
Reduced capacity for executive cognitive function and for the autonomic control of cardiac responsivity are both concomitants of the aging process. These may be linked through their mutual dependence on medial prefrontal function, but the specifics ofthat linkage have not been well explored. Executive functions associated with medial prefrontal cortex involve various aspects ofperformance monitoring, whereas centrally mediated autonomic functions can be observed as heart rate variability (HRV), i.e., variability in the length of intervals between heart beats. The focus for this thesis was to examine the degree to which the capacity for phasic autonomic adjustments to heart rate relates to performance monitoring in younger and older adults, using measures of electrocortical and autonomic activity. Behavioural performance and attention allocation during two age-sensitive tasks could be predicted by various aspects of autonomic control. For young adults, greater influence of the parasympathetic system on HRV was beneficial for learning unfamiliar maze paths; for older adults, greater sympathetic influence was detrimental to these functions. Further, these relationships were primarily evoked when the task required the construction and use of internalized representations of mazes rather than passive responses to feedback. When memory for source was required, older adults made three times as many source errors as young adults. However, greater parasympathetic influence on HRV in the older group was conducive to avoiding source errors and to reduced electrocortical responses to irrelevant information. Higher sympathetic predominance, in contrast, was associated with higher rates of source error and greater electrocortical responses tq non-target information in both groups. These relations were not seen for 11 errors associated with a speeded perceptual task, irrespective of its difficulty level. Overall, autonomic modulation of cardiac activity was associated with higher levels of performance monitoring, but differentially across tasks and age groups. With respect to age, those older adults who had maintained higher levels of autonomic cardiac regulation appeared to have also maintained higher levels of executive control over task performance.
Resumo:
Formulations of a general bactericidal agent, chlorhexidine, mixed with a phospholipid at different concentrations are investigated using ^H NMR spectroscopy on a chain-deuterated lipid analog. Lipid-chlorhexidine formulation is known to release the drug into an aqueous medium slowly, maintaining a comparable concentration of the drug for up to four times longer than a direct aqueous solution. The NMR data does not support the proposed liposomal entrapment of chlorhexidine in lipid compartments. Complex thermal history of the lipid-chlorhexidine preparations is investigated in detail. In preparation for a counterpart measurement, using ^H NMR of deuterated chlorhexidine mixed with protonated lipid, the synthesis of a deuterated analog of chlorhexidine is performed.
Resumo:
examined in Choanephora cucurbita rum during the early stages of infection by Piptocephalis virginiana » There was a small but consistent increase in the leakage of electrolytes, amino acids and sugars as a result of infection. These low levels of differential leakage in infected tissues are explained on the basis of the nature of this obligate, biotrophic, mycoparasitic system. Quantitative analysis of the twenty six amino acids and amino compounds detected in the leacheates — showed similar profiles in infected and control host and no new species of amino acids or amino compounds were detected in either infected or control host leacheates. Comparatively high amounts of aspartic acid, glutamic acid and alanine were found in the leacheates of host and infected host . Analyses of the sugars comprising the leacheates of infected and control host showed the presence of eight sugars, among which glucose was found in significant amounts (50-53%) ' The nutritional implication of this preferential leakage is discussed. No significant difference was observed in the leacheates of infected host sugar profiles compared with that of the control host. Profiles of the internal pool sugars of infected and control host did not reflect that obtained from the leacheate data, perhaps owing to leakage of sugars in a selective manner . Membrane lipid analyses yielded higher levels of lipid in infected host compared with the control, both at the 24 h and 36 h analyses. In addition, preliminary investigations of phosphorous-32 incorporation and turnover in phospholipids showed higher levels of 32p incorporation and turnover in infected host compared with the control. No apparent difference was noted in the profiles of the neutral lipid classes and the polar lipid classes of the membrane lipids as determined by one and two dimensional thin-layer chromatography respectively. However, a small but consistently higher degree of unsaturation was detected in the fatty acids of infected tissue compared with the control. Also, '^''-^^''^^'-'-^'^^c acid, a polyunsaturated fatty acid previously reported to show a direct correlation during the early stages of infection and the degree of parasitism of P. virginiana on C. cucurbitarum , was found in higher amounts in infected host membrane lipids compared with that of the control host. The implications of these membrane lipid alterations are discussed with particular reference to the small but consistently higher leakage of electrolytes, amino acids and sugars observed during infection in this study.
Resumo:
Order parameter profiles extracted from the NMR spectra of model membranes are a valuable source of information about their structure and molecular motions. To al1alyze powder spectra the de-Pake-ing (numerical deconvolution) ~echnique can be used, but it assumes a random (spherical) dist.ribution of orientations in the sample. Multilamellar vesicles are known to deform and orient in the strong magnetic fields of NMR magnets, producing non-spherical orientation distributions. A recently developed technique for simultaneously extracting the anisotropies of the system as well as the orientation distributions is applied to the analysis of partially magnetically oriented 31p NMR spectra of phospholipids. A mixture of synthetic lipids, POPE and POPG, is analyzed to measure distortion of multilamellar vesicles in a magnetic field. In the analysis three models describing the shape of the distorted vesicles are examined. Ellipsoids of rotation with a semiaxis ratio of about 1.14 are found to provide a good approximation of the shape of the distorted vesicles. This is in reasonable agreement with published experimental work. All three models yield clearly non-spherical orientational distributions, as well as a precise measure of the anisotropy of the chemical shift. Noise in the experimental data prevented the analysis from concluding which of the three models is the best approximation. A discretization scheme for finding stability in the algorithm is outlined
Resumo:
The fatty acid composition of the total, neutral, sterol, free fatty acid and polar-lipid fractions in the mycelium of Choanephora cucurbitarum was determined. The major fatty acids in all lipid fractions were palmitic, oleic, linoleic and y-linolenic acid. Different lipid fractions did not show any particular preference for any individual fatty acid; however, the degree of unsaturation was different in various lipid fractions. Addition of glutamic acid to the malt-yeast extract medium resulted in the biosynthesis of a number of long-chain fatty acids beyond y-linolenic acid. These fatty acids, e.g. C22~1' C24:0 and C26=Q were never observed to be present in the fungus when grown on a malt-yeast extract medium without glutamic acid. Furthermore, thin-layer chromatographic analysis showed a larger and denser spot of diphosphatidyl glycerol from the mycelium grown on the glutamic acid medium than from the control mycelium. Various cultural conditions such as temperature, age, pH, light and carbon:nitrogen ratio in the growth medium used in this study did not alter the qualitative profile of fatty acids normally present in the organism. Neither did these conditions stimulate the production of further long-chain fatty acids (C20 - C26) beyond y-linolenic acid as observed in growth media containing glutamic acid. These cultural conditions influenced the degree of unsaturation, this being due mainly to changes in the concentration of y-linolenic acid. The fatty acid pattern of the lipid fractions though the same qualitatively, differed quantitatively due to the variation in the y-linolenic acid content under different cultural conditions. The degree of unsaturation of various lipid fractions decreased with increases in temperature, light intensity and pH, but within each treatment the same pattern of decreasing degree of unsaturation with increasing age was observed. The cultural conditions, used in this study, are also known to influence the degree and rate of development of the parasite, Piptocephalis virginiana. A direct correlation was observed between the levels of y-linolenic acid in C. cucurbitarum during the early stages of growth (24 h) and the degree of parasitism of P. virginiana. The amount of y-linolenic acid present in the host mycelium was found to be unrelated to either the dry weight of the mycelium or to the total lipid contents. K. virginiana is confined to host species which produce y-linolenic acid in their mycelium. The lipid profile of the host, C. cucurbitarum, did not show a significant qualitative or quantitative change in the lipid profile as a result of infection by the parasite, P. virginiana,e However, an increase in the total lipid was observed in the infected host mycelium. The significance of these results is discussed.
Resumo:
A mixture of Chlorhexidine digluconate (CHG) with glycerophospholipid 1,2-dimyristoyl- <^54-glycero-3-phospocholine (DMPC-rf54) was analysed using ^H nuclear magnetic resonance. To analyze powder spectra, the de-Pake-ing technique was used. The method is able to extract simultaneously both the orientation distribution function and the anisotropy distribution function. The spectral moments, average order parameter profiles, and longitudinal and transverse relaxation times were used to explore the structural phase behaviour of various DMPC/CHG mixtures in the temperature range 5-60°C.
Resumo:
The a-tocopherol transfer protein (a-TTP) is responsible for the retention of the atocopherol form of vitamin E in living organisms. The detailed ligand transfer mechanism by a-TTP is still yet to be fully elucidated. To date, studies show that a-TTP transfers a-tocopherol from late endosomes in liver cells to the plasma membrane where it is repackaged into very low density lipoprotein (VLDL) and released into the circulation. Late endosomes have been shown to contain a lipid known as lysobisphosphatidic acid (LBP A) that is unique to this cellular compartment. LBPA plays a role in intracellular trafficking and controlling membrane curvature. Taking these observations into account plus the fact that certain proteins are recruited to membranes based on membrane curvature, the specific aim of this project was to examine the effect of LBP A on a-TTP binding to lipid membranes. To achieve this objective, dual polarization interferometry (DPI) and a vesicle binding assay were employed. Whilst DPI allows protein binding affinity to be measured on a flat lipid surface, the vesicle binding assay determines protein binding affinity to lipid vesicles mimicking curved membranes. DPI analysis revealed that the amount of a-TTP bound to lipid membranes is higher when LBPA is present. Using the vesicle binding assay, a similar result was seen where a greater amount of protein is bound to large unilamellar vesicles (LUV s) containing LBP A. However, the effect of LBP A was attenuated when small unilamellar vesicles (SUVs) were replaced with LUVs. The outcome of this project suggests that aTTP binding to membranes is influenced by membrane curvature, which in turn is induced by the presence of LBP A.
Resumo:
Vitamin E is a well known fat soluble chain breaking antioxidant. It is a general tenn used to describe a family of eight stereoisomers of tocopherols. Selective retention of a-tocopherol in the human circulation system is regulated by the a -Tocopherol Transfer Protein (a-TIP). Using a fluorescently labelled a-tocopherol (NBD-a-Toc) synthesized in our laboratory, a fluorescence resonance energy transfer (FRET) assay was developed to monitor the kinetics of ligand transfer by a-hTTP in lipid vesicles. Preliminary results implied that NBD-a-Toe simply diffused from 6-His-a-hTTP to acceptor membranes since the kinetics of transfer were not responsive to a variety of conditions tested. After a series of trouble shooting experiments, we identified a minor contaminant, E coli. outer membrane porin F (OmpF) that co-purified with 6-His-a-hTTP from the metal affinity column as the source of the problem. In order to completely avoid OmpF contamination, a GST -a-hTTP fusion protein was purified from a glutathione agarose column followed by an on-column thrombin digestion to remove the GST tag. We then demonstrated that a-hTTP utilizes a collisional mechanism to deliver its ligand. Furthennore, a higher rate of a-tocopherol transfer to small unilamellar vesicles (SUV s) versus large unilamellar vesicles (LUV s) indicated that transfer is sensitive to membrane curvature. These findings suggest that ahTTP mediated a-Toc transfer is dominated by the hydrophobic nature of a-hTTP and the packing density of phospholipid head groups within acceptor membranes. Based on the calculated free energy change (dG) when a protein is transferred from water to the lipid bilayer, a model was generated to predict the orientation of a-hTTP when it interacts with lipid membranes. Guided by this model, several hydrophobic residues expected to penetrate deeply into the bilayer hydrophobic core, were mutated to either aspartate or alanine. Utilizing dual polarization interferometry and size exclusion vesicle binding assays, we identified the key residues for membrane binding to be F 165, F 169 and 1202. In addition, the rates of ligand transfer of the u-TTP mutants were directly correlated to their membrane binding capabilities, indicating that membrane binding was likely the rate limiting step in u-TTP mediated transfer of u-Toc. The propensity of u-TTP for highly curved membrane provides a connection to its colocalization with u-Toc in late endosomes.
Resumo:
Membrane lipid composition, which includes phospholipid (PL) headgroup, and fatty acid (FA) saturation, has been shown to affect cellular function. The sarcolemma (SL) membrane is integral to skeletal muscle function and health. Previous studies assessing SL lipid composition are limited as they have 1) restricted analysis to a PL level and neglected FA composition and 2) relied on aggressive membrane isolation procedures resulting in t-tubule and sarcoplasmic reticulum contamination and unknown levels of nuclear and mitochondrial contamination. Thus, to overcome these limitations, this study assessed a method of individually skinned skeletal muscle fibres as an alternative to analyze complete sarcolemmal membrane lipid composition. The major findings of this study were 1) complete SL lipid composition can be obtained 2) the SL had higher sphingomyelin content than previous studies and 3) the SL membrane had minimal nuclear and mitochondrial contamination and was void of contamination from sarcoplasmic reticulum and t-tubules.
Resumo:
An illustration from the "Canadian Illustrated News" that shows a group of individuals "gathering the fruit" and then a "scene in the vineyard".
Resumo:
Sarco(endo)plasmic reticulum calcium ATPase (SERCA) is a transmembrane protein whose function is regulated by its immediate lipid environment (annulus). The composition of the annulus is currently unknown or it’s susceptibility to a high saturated fat diet (HSFD). Furthermore it is uncertain if HSFD can protect SERCA from thermal stress. The purpose of the study was to determine SERCA annular lipid composition, resulting impact of a HSFD, and in turn, influence on SERCA activity with and without thermal stress. The major findings were annular lipids were shorter and more saturated compared to whole homogenate and HSFD had no effect on annular lipid composition or SERCA activity with and without thermal stress. Both average chain length and unsaturation index were positively correlated with SERCA activity with and without thermal stress. These findings suggest that annular lipid composition is different than whole homogenate and its composition appears to be related to SERCA function.
Resumo:
Duchenne muscular dystrophy is a X-linked muscle disease, which leads to alterations in membrane phospholipid fatty acid (FA) composition and skeletal muscle damage. Increased membrane saturated FA in muscular dystrophy may suggest its association with increased susceptibility (as being the cause or consequence) to muscle damage. It was hypothesised that increased saturation is positively correlated to increased muscle damage. Correlations were hypothesized to be greater in extensor digitorum longus (EDL) at 20 weeks compared to soleus (SOL) at 10 weeks in dystrophin deficient (mdx) mice. Increased saturation was correlated to damage in EDL at both 10 and 20 weeks, with stronger correlations at 10 weeks. The results suggest that membrane PL FA composition may be associated with damage through two possible means. Increased saturation may be a cause or consequence of membrane damage. Association of membrane composition with eccentric induced damage has underscored the importance of saturated PL FA compositions in damage to dystrophic myofibres.