3 resultados para Limb congenital anomaly
em Brock University, Canada
Resumo:
A regional geochemical reconnaissance by bottom stream sediment sampling, has delineated an area of high metal content in the north central sector of the North Creek Watershed. Development of a geochemical model, relating to the relative chemical concentrations derived from the chemical analyses of bottom sediments, suspended sediments, stream waters and well waters collected from the north central sector, was designed to discover the source of the anomaly. Samples of each type of material were analysed by the A.R.L. Direct Reading Multi-element Emission Spectrograph Q.A. 137 for elements: Na, K, Ca, Sr, Si, As, Pb, Zn, Cd, Ni, Ti, Ag, Mo, Be, Fe, AI, Mn, Cu, Cr, P and Y. Anomalous results led to the discovery of a spring, the waters of which carried high concentrations of Zn, Cd, Pb, As, Ni, Ti, Ag, Sr and Si. In addition, the spring waters had high concentrations of Na, Ca, Mg, 504 , alkalinity, N03' and low concentrations of K, Cl and NH3. Increased specific conductivity (up to 2500 ~mho/cm.) was noted in the spring waters as well as increased calculated total dissolved solids (up to 2047 mg/l) and increased ionic strength (up to 0.06). On the other hand, decreases were noted in water temperature (8°C), pH (pH 7.2) and Eh (+.154 volts). Piezometer nests were installed in the anomalous north central sector of the watershed. In accordance with the slope of the piezometric surface from wells cased down to the till/bedrock interface, groundwater flow is directed from the recharge area (northwest of the anomaly) towards the artesian spring via the highly fractured dolostone aquifer of the Upper Eramosa Member. The bedrock aquifer is confined by the overlying Halton till and the underlying Lower Eramosa Member (Vinemount Shale). The oxidation of sphalerite and galena and the dissolution of gypsum, celestite, calcite, and dolomite within the Eramosa Member, contributed its highly, dissolved constituents to the circulating groundwaters, the age of which is greater than 20 years as determined by tritium dating. Groundwater is assumed to flow along the Vinemount Shale and discharge as an artesian spring where the shale unit becomes discontinuous. The anomaly is located on a topographic low where bedrock is close to the surface. Thermodynamic evaluation of the major ion speciation from the anomalous spring and surface waters, showed gypsum to be supersaturated in these spring waters. Downstream from the spring, the loss of carbon dioxide from the spring waters resulted in the supersaturation with respect to calcite, aragonite, magnesite and dolomite. This corresponded with increases in Eh (+.304 volts) and pH (pH 8.5) in the anomalous surface waters. In conclusion, the interaction of groundwaters within the highly, mineralized carbonate source (Eramosa Member) resulted in the characteristic Ca*Mg*HC03*S04 spring water at the anomalous site, which appeared to be the principle effect upon controlling the anomalous surface water chemistry.
Resumo:
Functional Electrically Stimulated (FES) ami cycle ergometry is a relatively new technique for exercise in individuals with impairments of the upper limbs. The purpose of this study was to determine the effects of 12 weeks of FES arm cycle ergometry on upper limb function and cardiovascular fitness in individuals with tetraplegia. F!ve subjects (4M/1F; mean age 43.8 ± 15.4 years) with a spinal cord injury of the cervical spine (C3- C7; ASIA B-D) participated in 12 weeks of3 times per week FES arm cycle ergometry training. Exercise performance measures (time to fatigue, distance to fatigue, work rate) were taken at baseline, 6 weeks, and following 12 weeks of training. Cardiovascular measures (MAP, resting HR, average and peak HR during exercise, cardiovascular efficiency) and self reported upper limb function (as determined by the CUE, sf-QIF, SCI-SET questionnaires) were taken at baseline and following 12 weeks of training. Increases were found in time to fatigue (84.4%), distance to fatigue (111.7%), and work rate (51.3%). These changes were non-significant. There was a significant decrease in MAP (91.1 ± 13.9 vs. 87.7 ± 14.7 mmHg) following 12 weeks ofFES arm cycle ergometry. There was no significant change in resting HR or average and peak HR during exercise. Cardiovascular efficiency showed an increase following the 12 weeks ofFES training (142.9%), which was non-significant. There were no significant changes in the measures of upper limb function and spasticity. Overall, FES arm cycle ergometry is an effective method of cardiovascular exercise for individuals with tetraplegia, as evidenced by a significant decrease in MAP, however it is unclear whether 12 weeks of thrice weekly FES arm cycle ergometry may effectively improve upper limb function in all individuals with a cervical SCI.
Resumo:
The human neuromuscular system is susceptible to changes within the thermal environment. Cold extrinsic temperatures can significantly reduce muscle and nervous system function and communication, which can have consequences for motor performance. A repeated measures design protocol exposed participants to a 12°C cold water immersion (CWI) up to the ankle, knee, and hip to determine the effect that reduced skin and muscle temperature had on balance and strength task execution. Although a linear reduction in the ability to perform balance tasks was seen from the control condition through to the hip CWI, results from the study indicated a significant reduction in dynamic balance (Star Excursion Balance Test reach distance) performance from only the hip CWI (P<0.05). This reduced performance could have been due to an increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced isokinetic muscular strength. Reduced physical performance due to cold temperature could negatively impact outdoor recreational athletics.