19 resultados para Lewis base
em Brock University, Canada
Resumo:
The preparation of chelated difluoroboron cations (DD)BF2+, where DD is a saturated polydentate tertiary-amine or polydentate aromatic ligand, has been systematically studied by using multinuclear solution and solid state nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. Three new methods of synthesis of (DD)BF2+ cations are reported, and compared with the previous method of reacting a chelating donor with Et20.BF3. The methods most effective for aromatic donors such as 1,1O-phenanthroline are ineffective for saturated polydentate tertiary-amines like N,N,N' ,Nil ,Nil-pentamethyldiethylenetriamine. Polydentate tertiary-amine donors that form 5-membered rings upon bidentate chelation were found to chelate effectively when the BF2 source contained two leaving groups (a heavy halide and a Lewis base such as pyridine =pyr or isoxazole =ISOX), i.e., pyr.BF2X (X = CI or Br), ISOX.BF2X and (pyr)2BF2+. Those that would form 6membered rings upon chelation do not chelate by any of the four methods. Polydentate aromatic ligands chelate effectively when the BF2 source contained a weak Lewis base, e.g., ISOX.BF3, ISOX.BF2X and Et20.BF3. Bidentate chelation by polydentate tertiaryamine and aromatic donors leads to nmr parameters that are significantly different then their (D)2BF2+ relatives (D =monod~ntate t-amines or pyridines). The chelated haloboron cations (DD)BFCI+, and (DD)BFBr+ were generated from D.BFX2 adducts for all ligands that form BF2+ cations above. In addition, the (DD)BCI2+ and (DD)BBr2+ cations were formed from D.BX3 adducts by the chelating aromatic ligands, except for the aromatic ligand 1,8-bis(dimethylamino)naphthalene, which formed only the (DD)BF2+ cation, apparently due to its extreme steric hindrance. Chelation by a donor is a two-step reaction. For polydentate tertiary-amine ligands, the two rates appear to be very dependent on the two possible leaving groups on the central boron atom. The order of increasing ease of displacement for the donors was: pyr < Cl < Br < ISOX. The rate of chelation by polydentate aromatic ligands appears to be dependent on the displacement of the first ligand from the boron. The order of increasing ease of displacement for the donors was: pyr < CI < ISOX ~ Br < Et20.
Resumo:
Exchange reactions between molecular complexes and excess acid
or base are well known and have been extensively surveyed in the
literature(l). Since the exchange mechanism will, in some way
involve the breaking of the labile donor-acceptor bond, it follows
that a discussion of the factors relating to bonding in molecular complexes
will be relevant.
In general, a strong Lewis base and a strong Lewis acid form a
stable adduct provided that certain stereochemical requirements are
met.
A strong Lewis base has the following characteristics (1),(2)
(i) high electron density at the donor site.
(ii) a non-bonded electron pair which has a low ionization potential
(iii) electron donating substituents at the donor atom site.
(iv) facile approach of the site of the Lewis base to the
acceptor site as dictated by the steric hindrance of the
substituents.
Examples of typical Lewis bases are ethers, nitriles, ketones,
alcohols, amines and phosphines.
For a strong Lewis acid, the following properties are important:(
i) low electron density at the acceptor site.
(ii) electron withdrawing substituents. (iii) substituents which do not interfere with the close
approach of the Lewis base.
(iv) availability of a vacant orbital capable of accepting
the lone electron pair of the donor atom.
Examples of Lewis acids are the group III and IV halides such
(M=B, AI, Ga, In) and MX4 - (M=Si, Ge, Sn, Pb).
The relative bond strengths of molecular complexes have been
investigated by:-
(i)
(ii)
(iii)
(iv)
(v]
(vi)
dipole moment measurements (3).
shifts of the carbonyl peaks in the IIIR. (4) ,(5), (6) ..
NMR chemical shift data (4),(7),(8),(9).
D.V. and visible spectrophotometric shifts (10),(11).
equilibrium constant data (12), (13).
heats of dissociation and heats of reactions (l~),
(16), (17), (18), (19).
Many experiments have bben carried out on boron trihalides in
order to determine their relative acid strengths. Using pyridine,
nitrobenzene, acetonitrile and trimethylamine as reference Lewis
bases, it was found that the acid strength varied in order:RBx3 >
BC1
3 >BF 3
• For the acetonitrile-boron trihalide and trimethylamine
boron trihalide complexes in nitrobenzene, an-NMR study (7) showed
that the shift to lower field was. greatest for the BB~3 adduct ~n~
smallest for the BF 3 which is in agreement with the acid strengths. If electronegativities of the substituents were the only
important effect, and since c~ Br ,one would expect
the electron density at the boron nucleus to vary as BF3
Resumo:
The Dudding group is interested in the application of Density Functional Theory (DFT) in developing asymmetric methodologies, and thus the focus of this dissertation will be on the integration of these approaches. Several interrelated subsets of computer aided design and implementation in catalysis have been addressed during the course of these studies. The first of the aims rested upon the advancement of methodologies for the synthesis of biological active C(1)-chiral 3-methylene-indan-1-ols, which in practice lead to the use of a sequential asymmetric Yamamoto-Sakurai-Hosomi allylation/Mizoroki Heck reaction sequence. An important aspect of this work was the utilization of ortho-substituted arylaldehyde reagents which are known to be a problematic class of substrates for existing asymmetric allylation approaches. The second phase of my research program lead to the further development of asymmetric allylation methods using o-arylaldehyde substrates for synthesis of chiral C(3)-substituted phthalides. Apart from the de novo design of these chemistries in silico, which notably utilized water-tolerant, inexpensive, and relatively environmental benign indium metal, this work represented the first computational study of a stereoselective indium-mediated process. Following from these discoveries was the advent of a related, yet catalytic, Ag(I)-catalyzed approach for preparing C(3)-substituted phthalides that from a practical standpoint was complementary in many ways. Not only did this new methodology build upon my earlier work with the integrated (experimental/computational) use of the Ag(I)-catalyzed asymmetric methods in synthesis, it provided fundamental insight arrived at through DFT calculations, regarding the Yamamoto-Sakurai-Hosomi allylation. The development of ligands for unprecedented asymmetric Lewis base catalysis, especially asymmetric allylations using silver and indium metals, followed as a natural extension from these earlier discoveries. To this end, forthcoming as well was the advancement of a family of disubstituted (N-cyclopropenium guanidine/N-imidazoliumyl substituted cyclopropenylimine) nitrogen adducts that has provided fundamental insight into chemical bonding and offered an unprecedented class of phase transfer catalysts (PTC) having far-reaching potential. Salient features of these disubstituted nitrogen species is unprecedented finding of a cyclopropenium based C-H•••πaryl interaction, as well, the presence of a highly dissociated anion projected them to serve as a catalyst promoting fluorination reactions. Attracted by the timely development of these disubstituted nitrogen adducts my last studies as a PhD scholar has addressed the utility of one of the synthesized disubstituted nitrogen adducts as a valuable catalyst for benzylation of the Schiff base N-diphenyl methylene glycine ethyl ester. Additionally, the catalyst was applied for benzylic fluorination, emerging from this exploration was successful fluorination of benzyl bromide and its derivatives in high yields. A notable feature of this protocol is column-free purification of the product and recovery of the catalyst to use in a further reaction sequence.
Resumo:
Mitochondria have an important role in cell metabolism, being the major site of ATP production via oxidative phosphorylation (OXPHOS). Accumulation of mtDNA mutations have been linked to the development of respiratory dysfunction, apoptosis, and aging. Base excision repair (BER) is the major and the only certain repair pathway existing in mitochondria that is in responsible for removing and repairing various base modifications as well as abasic sites (AP sites). In this research, Saccharomyces cerevisiae (S. cerevisiae) BER gene knockout strains, including 3 single DNA glycosylase gene knockout strains and Ap endonuclease (Apn 1 p) knockout strain were used to examine the importance of this DNA repair pathway to the maintenance of respiratory function. Here, I show that individual DNA glycosylases are nonessential in maintenance of normal function in yeast mitochondria, corroborating with previous research in mammalian experimental models. The yeast strain lacking Apn 1 p activity exhibits respiratory deficits, including inefficient and significantly low intracellular ATP level, which maybe due to partial uncoupling of OXPHOS. Growth of this yeast strain on respiratory medium is inhibited, but no evidence was found for increased ROS level in Apn 1 p mitochondria. This strain also shows an increased cell size, and this observation combined with an uncoupled OXPHOS may indicate a premature aging in the Apnlp knockout strain, but more evidence is needed to support this hypothesis. However, the BER is necessary for maintenance of mitochondrial function in respiring S.cerevisiae.
Resumo:
Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).
Resumo:
This thesis can be broken down into two sections. Section one is a study . of the ionization mechanisms and the ion source optimization for Fast Atom Bombardment (FAB) ionization. For this study, several specially designed probe tips were created and tested under various experimental conditions. The aIm of this section is to understand the operating characteristics of a FAB IOn source better. The second section involves the study of several Vitamin B6 Schiff Base complexes using both positive and negative ion FAB MS. This section is an exploration of the usefulness of FAB MS as a structure probe for the metalcoordination complexes of Vitamin B6.
Resumo:
Caption title.
Resumo:
"How can I improve my practice and contribute to the professional knowledge base through narrative-autobiographical self-study?" Through the use of Whitehead's (1989) living educational theory and examination of my stories, I identify the values and critical events that have helped me come to know my own learning and shape my professional self. Building on the premise that educational knowledge/theory is created, recreated, and lived through educational inquiry; I strive to make meaning of this data archive, collected over 7 years of teaching. I chart my journey to reexamine my beliefs and practices, to find a balance between traditional and progressive practices and to align my theory and practice. I retell, and, thus, in some way relive, my own "living contradictions." A reconceptualization of the KNOW, DO, BE model (Drake & Burns, 2004) is used to develop strategies to align my practice, including a six-step model of curriculum design that combines the backwards design process of Wiggins and McTighe (1998), the KNOW, DO, BE model (Drake & Burns) and Curry and Samara's (1995) differentiation planner.
Resumo:
An unidentified young Black woman is featured in this cabinet card portrait by photographer I. H. (Isaac) Lewis, of Toronto. The photographer's name and address is stamped in gold lettering on the lower front of the card. The address is given as 106 1/2 Queen St. W., Toronto. This cabinet card was in the possession of Iris Sloman Bell, of St. Catharines, Ontario. The Bell - Sloman family relatives include former Black slaves from the United States who settled in Canada.Isaac H. Lewis was a photographer in Toronto from 1886 - 1900. Source: Phillips, Glen C. The Ontario photographers list (1851-1900). Sarnia: Iron Gate Publishing Co., 1990.
Resumo:
A cabinet card portrait of an unidentified woman by I. H. Lewis, a photographer
Resumo:
This paper captured our joint journey to create a living educational theory of knowledge translation (KT). The failure to translate research knowledge to practice is identified as a significant issue in the nursing profession. Our research story takes a critical view of KT related to the philosophical inconsistency between what is espoused in the knowledge related to the discipline of nursing and what is done in practice. Our inquiry revealed “us” as “living contradictions” as our practice was not aligned with our values. In this study, we specifically explored our unique personal KT process in order to understand the many challenges and barriers to KT we encountered in our professional practice as nurse educators. Our unique collaborative action research approach involved cycles of action, reflection, and revision which used our values as standards of judgment in an effort to practice authentically. Our data analysis revealed key elements of collaborative reflective dialogue that evoke multiple ways of knowing, inspire authenticity, and improve learning as the basis of improving practice related to KT. We validated our findings through personal and social validation procedures. Our contribution to a culture of inquiry allowed for co-construction of knowledge to reframe our understanding of KT as a holistic, active process which reflects the essence of who we are and what we do.
Resumo:
1. Triarylamminium radical-cation complexes. The detailed study of manganese, copper and nickel metal-radical complexes with triarylamminium ligands was conducted. Stable, neutral and pseudo-octahedral coordination monometallic complexes with simple monodentate 2,2`-bipyridine ligand containing a redox-active N,N`-(4,4`-dimethoxydiphenyl-amino) substituent were synthesized and fully characterized. The one-electron oxidation process and formation of persistent radical-cation complexes was observed by cyclic voltammetry and spectroelectrochemical measurements. Evans method measurements were performed with radical-cation complexes generated by chemical one-electron oxidation with NOPF6 in acetonitrile. The experimental results indicate ferromagnetic coupling between metal and triarylamminium cation in manganese (II) complex and antiferromagnetic coupling in nickel (II) complex. This data is supported by DFT calculations which also lend weight to the spin polarization mechanism as an operative model for magnetic exchange coupling. Neutral bimetallic complexes with a new ditopic ligand were synthesized and fully characterized, including magnetic and electrochemical studies. Chemical oxidation of these precursor complexes did not generate radical-cations, but dicationic complexes, which was confirmed by UV-vis and EPR-experiments, as well as varied temperature magnetic measurements. DFT calculations for radical-cation complexes are included. A synthetic pathway for polytopic ligand with multiple redox-active triarylamine sites was developed. The structure of the ligand is presumably suitable for -spin polarization exchange model and allows for production of polymetallic complexes having high spin ground states. 2. Base-catalyzed hydrosilylation. A simple reductive base-catalyzed hydrosilation of aldehydes and ketones was adapted to the use of the cheap, safe, and non-toxic polymethylhydrosiloxane (PMHS) instead of the common PhSiH3 and (EtO)3SiH, which present significant cost and safety concerns, respectively. The conversion of silane into pentacoordinate silicate species upon addition of a base was studied in details for the cases of phenyl silane and PMHS and is believed to be essential for the hydrosilylation process. We discovered that nucleophiles (a base or fluoride-anion) induced the rearrangement of PMHS and TMDS into light silanes: MeSiH3 and Me2SiH2, respectively. The reductive properties of PMHS under basic conditions can be attributed to the formation of methyl silane and its conversion into a silicate species. A procedure for the generation of methyl silane and its use in further efficient reductions of aldehydes and ketones has been developed. The protocol was extended to the selective reduction of esters and tertiary amides into alcohols and aldimines into amines with good isolated yields and reduction of heterocyclic compounds was attempted.
Resumo:
The description for the image reads "Niagara in winter, huge bank of frozen water below the American Falls. The beginning of the ice-bridge".
Resumo:
The wrestler's name is Strangler Lewis and the number stamped on the reverse of the card is 471.