2 resultados para Laser energy

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

SrMg^Rui-iOa thin films were made by using pulsed laser deposition on SrTiOa (100) substrates in either O2 or Ar atmosphere. The thin films were characterized by x-ray diffraction, energy dispersive x-ray microanalysis, dc resistivity measurement, and dc magnetization measurement. The effect of Mg doping was observed. As soon as the amount of Mg increased in SrMg-cRui-iOa thin films, the magnetization decreased, and the resistivity increased. It had little effect on the Curie temperature (transition temperature). The magnetization states of SrMgiRui-iOa thin films, for x < 0.15, are similar to SrRuOs films. X-ray diffraction results for SrMga-Rui-iOa thin films made in oxygen showed that the films are epitaxial. The thin films could not be well made in Ar atmosphere during laser ablation as there was no clear peak of SrMg^Rui-iOa in x-ray diffraction results. Substrate temperatures had an effect on the resistivity of the films. The residual resistivity ratios were increased by increasing substrate temperature. It was observed that the thickness of thin films are another factor for film quality: Thin films were epitaxial, but thicker films were not epitaxial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photosynthetic state transitions were investigated in the cyanobacterium Synechococcus sp. PCC 6301 by studying fluorescence emission, heat loss, and PS I activity in intact cells brought to state 1 and state 2. 77K fluorescence emission spectra were modelled with a sum of 6 components corresponding to PBS, PS II, and PS I emissions. The modelled data showed a large decrease in PS II fluorescence accompanied with a small increase in the PS I fluorescence upon transition to state 2 for excitation wavelengths absorbed by both PBS and ChI ll.. The fluorescence changes seen with ChI .a. excitations do not support the predictions of the mobile PBS model of state transition in PBS-containing organisms. Measurements of heat loss from intact cells in the two states were similar for both ChI it. and PBS excitations over three orders of magnitude of laser flash intensity. This suggests that the PBS does not become decoupled from PS II in state 2 as proposed by the PBS detachment model of state transition in PBS-containing organisms. PS I activity measurements done on intact cells showed no difference in the two states, in contrast with the predictions of all of the existing models of state transitions. Based on these results a model for state transition In PBScontaining organisms is proposed, with a PS II photoprotectory function.