1 resultado para Lactation curve
em Brock University, Canada
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (36)
- Aquatic Commons (4)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (49)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (12)
- CentAUR: Central Archive University of Reading - UK (34)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (2)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (22)
- Helda - Digital Repository of University of Helsinki (26)
- Indian Institute of Science - Bangalore - Índia (78)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (10)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (27)
- Queensland University of Technology - ePrints Archive (348)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (95)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (3)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (6)
- University of Michigan (19)
- University of Queensland eSpace - Australia (12)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
For the past 20 years, researchers have applied the Kalman filter to the modeling and forecasting the term structure of interest rates. Despite its impressive performance in in-sample fitting yield curves, little research has focused on the out-of-sample forecast of yield curves using the Kalman filter. The goal of this thesis is to develop a unified dynamic model based on Diebold and Li (2006) and Nelson and Siegel’s (1987) three-factor model, and estimate this dynamic model using the Kalman filter. We compare both in-sample and out-of-sample performance of our dynamic methods with various other models in the literature. We find that our dynamic model dominates existing models in medium- and long-horizon yield curve predictions. However, the dynamic model should be used with caution when forecasting short maturity yields