6 resultados para LITHIUM-NIOBATE
em Brock University, Canada
Resumo:
Decomposition and side reactions of, and the synthetic use of, pentafluorophenylmagnesium bromide and pentafluorophenyllithium have been investigated using G,C9/M.S, techniques• Their reactions with reagents such as CgF^X (X - H, F, CI, Br, 1), C6F4X2 (X - H, CI)f C6F3C13, C6H6. (CgX5)3P (X = H, F), (C6X5)3P=0 (X = H, F), (CgX5)Si (CH3)3 (X = H, F) and (CH0K SiCl , n = 1,2, in ether or ether/n-hexane were studied• In addition to the principal reaction of synthetic use, namely the replacement of a halogen by a pentafluorophenyl group, two types of side reactions were observed* These were (i) intermolecular loss of LiF via a nucleophilic substitution, and (ii) intramolecular loss of LiF, followed by the addition of either inorganic salts such as lithium or magnesium halides, or organometal compounds such as organolithium or organo-Grigaard* G.C«/M.S. techniques were routinely employed to study complicated reaction mixtures. Although mass spectrometry alone has disadvantages for the identification of isomers, deduction of the most probable pathway often helps overcome this problem.
Resumo:
This research was directed towards the investigation and development of an aryne route to the syntheses of aporphi ne and dibenzopyrrocolinium (dibenzoindolizinium) alkaloids and to the stability of the latter under the conditions used for aryne formation. The work c an be divided into three main sections . i) - Synthesis of Glaucine 6-Bromo-3,4-dimethoxyphenylacetic acid, prepared by the action of bromine i n acetic acid on3,4-dimethoxyphenylacetic a cid, was converted into its acid chloride by t he action of thionyl chloride. This on treatment with 3,4- dimethoxyphenylethylamine pr ovided N-(3, 4-dimethoxyphenylethyl)- 2-(2-bromo-4,S-dimethoxyphenyl)-acetamide which on dehydration with phosphoryl chloride (Bischler Napieralski reaction) in dry benzene afforded l -(2-bromo-4,S-dimethoxybenzyl)- 3,4-dihydro-6,7-dimethoxyisoquinoline, isolated as hydrochl oride. A new method o f destroying the excess of phosphoryl chloride was developed which proved to be quite useful. Methylation of the dihydroisoquinoline'with methyl iodide in methanol , and subsequent reduction with sodium borohydride provided (±)-6-bromolaudanosine. Act ion of potassamide or sodamide in anhydrous liquid ammonia on (±)-6-bromolaudanosine yielded the corresponding amino derivative along with other products. Diazotization and ring closure of (±)-6-aminolaudanosine then a f forded (±)-glaucine which was isolated as methiodide. ii) - Intramolecular Capture of Aryne During Glaucine Synthesis, and Subsequent Reactions . This section deals with the by-products formed under the conditions of the aryne stage of t he glaucine synthesis. The crude product, obtained in the reaction of potassamide or sodamide in liquid ammonia on (±)-6-bromolaudanosine, was s eparated by chromatography, Three products were separated and identified. a ) - 5,6-Dimethoxy-2-( 3,4-dimethoxy-6-ethylphenyl)-lmethylindole. Two mechanisms are proposed for the formation of this interesting product. This compound also was prepared by the action of potassamide in l,iquid ammonia on 5,6 ,l2,l2atetrahydro- 2,3,9,lO-tetramethoxy-7-methyldibenz[b,g]indolizinium i odide . b) - 5,6-Dimethoxy-2-(3,4-dimethoxy-6-vinylphenyl)-lmethylindoline. Its formation represented a new method of Hofmann degradation . Further confirmation of structure was done by performing the normal Hofmann reaction on 5, 6,12,12a-tetrahydro -2/3,9,lO-tetramethoxy ~7-methyldibe nz[ b,g]indolizinium iodide. The indoline prepared i n this way was identical in all respects with that prepared above . c) - 1- (2-amino-4,5-dimethoxybenzyl ) -l,2,3,4-tetrahydro-2- methyl-6,7-dimethoxyisoquinoline, was converted t o glaucine as stated in section 1 . iii) - Attempt:,ed Sxnthesis of Liriodenine Piperonal was converted into 3,4-methylenedioxyinitrostyrene which on reduction with lithium aluminium hydride provided 3,4-methylenedioxyphenylethylamine. The method of extraction after the reduction was improved t o some extent. The amine on condensation with m-chlorophenylacetyl chloride, prepared by the action of oxalyl chloride on 3,4-methylenedioxyphenylacetic acid, provided N-[ ~ -(3,4-methylenedioxyphenyl)- e thyl)-3-chlorophenylacetamide. This on dehydration with phosphoryl chloride in dry benzene followed by air oxidation afforded l-(3-chlorobenzoyl)-6,7-methylenedioxyi soquinoline. This compound on r eaction with potassamide in liquid ammonia afforded a crude product from which. one product was separated by chromatography i n a pure condition . This yellow compound analysed as,c17Hl ON2021 and was t he main product i n the reaction ; a t entative structure is proposed. A second compound, not obtained in pure condition, was submitted to Pschorr reaction in the hope of obtaining liriodenine, but without success.
Resumo:
Methods for both partial and full optimization of wavefunction parameters are explored, and these are applied to the LiH molecule. A partial optimization can be easily performed with little difficulty. But to perform a full optimization we must avoid a wrong minimum, and deal with linear-dependency, time step-dependency and ensemble-dependency problems. Five basis sets are examined. The optimized wavefunction with a 3-function set gives a variational energy of -7.998 + 0.005 a.u., which is comparable to that (-7.990 + 0.003) 1 of Reynold's unoptimized \fin ( a double-~ set of eight functions). The optimized wavefunction with a double~ plus 3dz2 set gives ari energy of -8.052 + 0.003 a.u., which is comparable with the fixed-node energy (-8.059 + 0.004)1 of the \fin. The optimized double-~ function itself gives an energy of -8.049 + 0.002 a.u. Each number above was obtained on a Bourrghs 7900 mainframe computer with 14 -15 hrs CPU time.
Resumo:
This work contains the results of a series of reduction studies on polyhalogenated aromatic compounds and related ethers using alkali metals in liquid ammonia. In general, polychlorobenzenes were reduced to t he parent aromatic hydrocarbon or to 1 ,4-cyc1ohexadiene, and dipheny1ethers were cleaved to the aroma tic hydrocarbon and a phenol. Chlorinated dipheny1ethers were r eductive1y dechlorinated in the process. For example, 4-chlorodipheny1- ether gave benzene and phenol. Pentach1orobenzene and certain tetrachlorobenzenes disproportionated to a fair degree during the reduction process if no added proton source was present. The disproportionation was attributed to a build-up of amide ion. Addition of ethanol completely suppressed the formation of any disproportionation products. In the reductions of certain dipheny1ethers , the reduction of one or both of the dipheny1ether rings occurred, along with the normal cleavage. This was more prevalent when lithium was the metal used . As a Sidelight, certain chloropheno1s were readily dechlorinated. In light of these results, the reductive detoxification of the chlorinated dibenzo-1,4-dioxins seems possible with alkali metals in l iquid ammonia.
Resumo:
Reactions of 5,6- and 4,5-epoxycholestane derivatives with strong bases were investigated. Epoxidation of 3a-acetoxycholest-5-ene also gave a new compound along with the anticipated epoxides. Interconversions of the latter were observed. Some possible mechanisms of its formation and rearrangements have been pIioposed. No reaction was observed with any of the 5,6- and 4,5-steroidal epoxides employed in the present study, using potassium tertiary butoxide under refluxing conditions. n-Butyllithium reacted only with 5,6-epoxycholestanes bearing a ketal moiety at the C3 carbon. Opening of the ketal group was observed with n-butyllithium in the case of a ~-epoxide. The reaction was also investigated in the absence of epoxide functionality. A possible mechanism for the opening of ketal group has been proposed. Lithium diethylamide (LDEA) was found effective in rearranging 5,6- and 4,5-epoxides to their ~orresponding allylic alcohols. These rearrangements presumably proceed via syn-eliminations, however the possibility of a corresponding anti-elimination has not been eliminated. A substituent effect of various functional groups (R = H, OH, OCH2CH20) at C3 has-been observed on product distribution in the LDEApromoted rearrangements of the corresponding epoxides. No reaction of these epoxides was observed with lithium diisopropylamide (LDA) • In the second part of the project, several attempts were made towards the sYRthesis of deoxycorticoste~one~17,2l,2l~d3' a compound desirable for the 2l-dehydroxylation studies of deoxycorticosterone. Several routes were investigated, and some deuterium labelled pregnane derivatives were prepared in this regard. Microbial 21-hydroxylation of progesteronel7,21,21,2l- d4 by ~ niger led to loss of deuterium from C21 of the product. An effort was made to hydroxylate progesterone microbially under neutral condtions.
Resumo:
This thesis describes the synthesis and use of an N-substituted ferrocene bearing a proline-derived chiral directing group and diastereoselective lithiation-electrophile quench of the pro-Sp hydrogen of the ferrocene to give planar chiral products in >95:5 dr. The auxiliary group is found to be stable to lithium bases of types RLi and R2NLi giving the same diastereoselectivity. The anti- epimer of the previously mentioned syn auxiliary induces lithiation of pro Rp rather than pro Sp hydrogen in >95:5 dr. Upon electrophile quench and elimination, the enantiomer of the syn-derived planar chiral imidazolone is obtained. Hence, this method provides a practical way to prepare planar chiral enantiomers in this series without the use of a more expensive D-proline derived starting material. The syn and anti epimers have β, γ-stereogenic centers and the origin of stereoselectivity in lithiation appears to be driven by the conformational bias exerted by the β-silyloxy moiety in each chiral auxiliary. In the thesis, this conclusion is supported using insensitivity of lithiation selectivity to the bulkiness of the base, comparison of enantiomers, deuteration experiments, nOe difference studies and computational modeling of the ground states and lithiation transition states for both substrates. The products are then converted to ligand precursors to make iridium and rhodium complexes. Among them, one of the cationic iridium complex is found to be effective in the asymmetric hydrogenation of 2-substituted quinolines with enantioselectivities up to 80% at pressures as low as 5 atm.