5 resultados para Joris, David, b. 1501 or 2.
em Brock University, Canada
Resumo:
A blueprint produced by Westinghouse Electric & MFG. Co. in Pittsburgh, Pennsylvanna. The blueprint is dated 19 August 1903 and is stamped "OBSOLETE".
Resumo:
PreVi011.3 ':i or~ : indicat e('. tk~t ho t~)rE's sed ~-Al B 12 1i~2, ~' a semiconductor. r:Toreove r , the s i mpl.(~ electronic t heory also indi cates that ~ -AIB1 2 should be a semico nductor, since thf're is one nonbonding e 'Le ctrofl per AlB12- uni t. JPor these reasons, we decided to measure t he electrical n ropert i ~ s of ~ -AlB1 2 single crystal s . Singl e crystal s of¥- AIB 12 ab ou t 1 x 1 r1n1 . size were grown from a copper mel t at 12500 C. The melt technique coupled. 1,vi th slow cooling vilas used because of i ts advantages such as : siTYInle set- up of the expe rimon t ; only e ;l.sil y available c hemi cals are required and it i s a c omparatively strair::bt forvvard y,le t hod still yielding crystal s big enouGh for OtU' purpose . Copper rms used as a solvent , i nst8ad of previOl.wly used aluminum , because it allows c.l.'ystal growth at hig he r t emneratures. HovlGver, the cry s tals of ] -AlB12 shm'red very hi gh res i s t ance a t r oom temperature . From our neasureJ'lents we conclude that the r esistivity of j3- Al B12 is, at least, given as ~ = 4. x 107 oblD .em •• Those results are inc ons i s t ent wi 'uh the ones .. reported by IIiss Khin fo r bot- pressed j3-AlB12 g i ven a s = 7600 ohm . em . or I e s s . ' Since tbe hot pressing was done at about 800 - ' 9000C i n ~ rap hi te moul ds 1,7i th 97% AlB12- p oVJder, vie thi nk there is pas s ib i 1 i ty th a.t lower borides or borot] carbide are , being formed, ':.Jhich are k11 own to be good semiconductors . v7e tried to ro-pe r-AlB12 by addi'J,'?: agents s uch as l:Ig , IG.-InO 4. ' HgS04 , KI12PO 4·' etc. to t he melt .. However , all these re age 11 t eel either reduced the yield and size of t lJe crystals or r;ave crystals of high r esis'can ce again. We think tba t molten copper keeps t he i mpurities off . There is also a pos s i bil i ty t hc:!,t these doping agents get oxidi~::;ed at '1 250°C • Hence, we co ~ clud e that J -AIB12 has v~ ry high r es i stance at r oom temperature . This was a l s o C011 - fi rmed by checki ng the siYlgle and. polycrystals of .~-AIB12 from Norton Co., Ontario and Cooper Nletallurgical Association. Boron carbide has been reported to be a semiconductor with ~ - 0.3 to 0.8 ohm . cm. for hotpres sed s araples. Boron carbide b e inq: struct urally related to ¥-AIB12 , we de cided to study the electrical prone rties of it~ Single crystals. These crystals were cut from a Single melt grovvn crystal a t Norton Co., Ontario. The resistivity of th," se crystal s was measured by the Van der Pam-v' s ~ nethod, which \vas very c onvenient fo r our crystal sha-pp.s. Some of the crystals showed resistivity ~ == 0.50 ob,Tn.cr] . i n agreement with the previously reported results . However , a few crystals showed lower resistivity e.g . 0 .13 and 0.20 ohm.cra • • The Hall mobility could .not be measured and th8reiore i s lower than 0 .16 em 2 v - 1 sec -1 • This is in agreement \vith t he re1)orted Hall mobility for pyrolytic boron . _ 2 -1 -1 carbide as 0.13 cm v sec • We also studied the orientation of the boron carbide crystals by the Jjaue-method. The inclination of c-axis with res pect to x-ray be81Il was det ermined . This was found to be 100 t o 20° f or normal resistivity sarnples (0.5 ohm . cm.) and 27 - 30° for t he lower r esistivity samples (0.1 ~5 to 0.20 ohm.cm .). This indica tes the possibility that th.e r es if.1tivity of B13C3 i s orientation dependent.
Resumo:
Exchange reactions between molecular complexes and excess acid or base are well known and have been extensively surveyed in the literature(l). Since the exchange mechanism will, in some way involve the breaking of the labile donor-acceptor bond, it follows that a discussion of the factors relating to bonding in molecular complexes will be relevant. In general, a strong Lewis base and a strong Lewis acid form a stable adduct provided that certain stereochemical requirements are met. A strong Lewis base has the following characteristics (1),(2) (i) high electron density at the donor site. (ii) a non-bonded electron pair which has a low ionization potential (iii) electron donating substituents at the donor atom site. (iv) facile approach of the site of the Lewis base to the acceptor site as dictated by the steric hindrance of the substituents. Examples of typical Lewis bases are ethers, nitriles, ketones, alcohols, amines and phosphines. For a strong Lewis acid, the following properties are important:( i) low electron density at the acceptor site. (ii) electron withdrawing substituents. (iii) substituents which do not interfere with the close approach of the Lewis base. (iv) availability of a vacant orbital capable of accepting the lone electron pair of the donor atom. Examples of Lewis acids are the group III and IV halides such (M=B, AI, Ga, In) and MX4 - (M=Si, Ge, Sn, Pb). The relative bond strengths of molecular complexes have been investigated by:- (i) (ii) (iii) (iv) (v] (vi) dipole moment measurements (3). shifts of the carbonyl peaks in the IIIR. (4) ,(5), (6) .. NMR chemical shift data (4),(7),(8),(9). D.V. and visible spectrophotometric shifts (10),(11). equilibrium constant data (12), (13). heats of dissociation and heats of reactions (l~), (16), (17), (18), (19). Many experiments have bben carried out on boron trihalides in order to determine their relative acid strengths. Using pyridine, nitrobenzene, acetonitrile and trimethylamine as reference Lewis bases, it was found that the acid strength varied in order:RBx3 > BC1 3 >BF 3 • For the acetonitrile-boron trihalide and trimethylamine boron trihalide complexes in nitrobenzene, an-NMR study (7) showed that the shift to lower field was. greatest for the BB~3 adduct ~n~ smallest for the BF 3 which is in agreement with the acid strengths. If electronegativities of the substituents were the only important effect, and since c~ Br ,one would expect the electron density at the boron nucleus to vary as BF3<BC1~ BBr 3 and therefore, the acid strength would vary as BF~BC1)BBr3: However, for the boron trihalides, the trend is in the opposite direction as determined experimentally. Considerable back-bonding (20), (21) between the halogen and the boron atoms has been proposed as the predominating factor, i.e. ~rt- back-bond between a lone electron pair on the halogen and the vacant orbital on the boron site. The degree of back-bonding varies inversely as the bo~on halogen distance and one would therefore expect the B-F bond to exhibit greater back-bonding character than the B-Cl or B-Br bonds. Since back-bonding transfers electron density from substituent to the boron atom site, this process would be expected to weaken the Lewis acid strength. This explains the Lewis acid strength increasing in the order BF 3 BC1 3 BBr 3 . When the acetonitrile boron trihalide complex is formed, the boron atom undergoes ~_cbange of hybridization from sp2 to sp3. From a linear relationship between the heat of formation of ethyl acetate adducts and the shift in the carbonyl I.R. stretch, Drago (22) et al have proposed that the angular di~tortion of the X-B-X bonds from sp2 (12 ) to sp3 (10 hybridization is proportional to the amount of charge transferred, i.e. to the nature of the base, and they have rejected the earlier concept of reorganization energy in explaining the formation of the adduct bond (19).
Resumo:
Hg(18-Crown-6)C12 and Cd(18-Crown-6)C12 are isostructura1, space group Cl~ Z = 2. For the mercury compound, a = 10.444(2) A° , b = 11. 468(1) A° , c = 7.754(1) A° , a = 90.06(1)°, B = 82.20(1)°, Y = 90.07(1)°, Dobs = 1.87, Dca1c = 1.93, V = 920.05 13, R = 4.66%. For the cadmium compound, 000 a = 10.374(1) A, b = 11.419(2) A, c = 7.729(1) A, a = 89.95(1)°, B = 81.86(2)°, Y = 89.99(1)°, Dobs = 1.61, Dcalc = 1.64, V = 906.4613, R = 3.95%. The mercury and cadmium ions exhibit hexagonal bipyramidal coordination, with the metal ion located on a centre of symmetry in the plane of the oxygen atoms. The main differences between the two structures are an increase in the metal-oxygen distance and a reduction in the metalchloride distance when the central ion changes from Cd2+ to Hg2+. These differences may be explained in terms of the differences in hardness or softness of the metal ions and the donor atoms.
Resumo:
The syntheses, catalytic reactivity and mechanistic investigations of novel Mo(IV) and Mo(VI) imido systems is presented. Attempts at preparing mixed bis(imido) Mo(IV) complexes of the type (RN)(R′N)Mo(PMe3)n (n = 2 or 3) derived from the mono(imido) complexes (RN)Mo(PMe3)3(X)2 (R = tBu (1) or Ar (2); X = Cl2 or HCl, Ar=2,6-iPr2C6H3) are also described. The addition of lithiated silylamides to 1 or 2 results in the unexpected formation of the C-H activated cyclometallated complexes (RN)Mo(PMe3)2(η2-CH2PMe2)(X) (R = Ar, X = H (3); R = tBu, X = Cl (4)). Complexes 3 and 4 were used in the activation of R′E-H bonds (E = Si, B, C, O, P; R′ = alkyl or aryl), which typically give products of addition across the M-C bond of the type (RN)Mo(PMe3)3(ER′)(X) (4). In the case of 2,6-dimethylphenol, subsequent heating of 4 (R = Ar, R′ = 2,6-Me2C6H3, E = O) to 50 °C results in C-H activation to give the cyclometallated complex (ArN)Mo(PMe3)3(κ2-O,C-OPh(Me)CH2) (5). An alternative approach was developed in synthesizing the mixed imido complex (ArN)(tBuN)Mo(PMe3)(η2-C2H4) (6) through EtMgBr reduction of (ArN)(tBuN)MoCl2(DME) in the presence of PMe3. Complex 6 reacts with various hydro- and chlorosilanes to give β-agostic silylamido complexes and in one case, when Me2SiHCl is the silane, leads to the silanimine complex (tBuN)Mo(η2-SiMe2-NAr)(Et)(η2-C2H4) (7). Mechanistic studies on the formation of the Mo(VI) tris(silyl) complex (tBuN)Mo(SiHPh)(H){(μ-NtBu)(SiHPh)}(PMe3)2 (8) were done from the addition of three equivalents of PhSiH3 to (tBuN)Mo(PMe3)(η2-C2H4), resulting in identification of β- and γ-agostic SiH…Mo intermediates. The reactivity of complex 8 towards ethylene and nitriles was studied. In both cases coupling of unsaturated substrates with the Mo-Si bond of the metalacycle was observed. In the case of nitriles, insertion into the 4-membered disilaazamolybdacycle results in complexes of the type (tBuN)Mo{(κ2-Si,C-SiHPh-NtBu-SiHPh-N=C(R)}(PMe3)2. Catalytic hydrosilylation of carbonyls mediated by the β-agostic silylamido complex (ArN)2Mo(η3-NtBu-SiMe2-H)(H) (9) was investigated. Stoichiometric reactions with organic substrates showed that catalysis with 9 does not proceed via the conventional insertion of substrate into the Mo-H bond.