45 resultados para Irrigation canals and flumes
em Brock University, Canada
Resumo:
The resurgence of malaria in highland regions of Africa, Oceania and recently in South America underlines the importance of the study of the ecology of highland mosquito vectors of malaria. Since the incidence of malaria is limited by the distribution of its vectors, the purpose of this PhD thesis was to examine aspects of the ecology of Anopheles mosquitoes in the Andes of Ecuador, South America. A historical literature and archival data review (Chapter 2) indicated that Anopheles pseudopunctipennis transmitted malaria in highland valleys of Ecuador prior to 1950, although it was eliminated through habitat removal and the use of chemical insecticides. Other anopheline species were previously limited to low-altitude regions, except in a few unconfirmed cases. A thorough larval collection effort (n=438 attempted collection sites) in all road-accessible parts of Ecuador except for the lowland Amazon basin was undertaken between 2008 - 2010 (Chapter 3). Larvae were identified morphologically and using molecular techniques (mitochondrial COl gene), and distribution maps indicated that all five species collected (Anopheles albimanus, An. pseudopunctipennis, Anopheles punctimacula, Anopheles oswaldoi s.l. and Anopheles eiseni) were more widespread throughout highland regions than previously recorded during the 1940s, with higher maximum altitudes for all except An. pseudopunctipennis (1541 m, 1930 m, 1906 m, 1233 m and 1873 m, respectively). During larval collections, to characterize species-specific larval habitat, a variety of abiotic and biotic habitat parameters were measured and compared between species-present and species-absent sites using chi-square tests and stepwise binary logistic regression analyses (Chapter 4). An. albimanus was significantly associated with permanent pools with sand substrates and An. pseudopunctipennis with gravel and boulder substrates. Both species were significantly associated with floating cyanobacterial mats and warmer temperatures, which may limit their presence in cooler highland regions. Anopheles punctimacula was collected more often than expected from algae-free, shaded pools with higher-than-average calculated dissolved oxygen. Anopheles oswaldoi s.l., the species occurring on the Amazonian side of the Andes, was associated with permanent, anthropogenic habitats such as roadside ditches and ponds. To address the hypothesis that human land use change is responsible for the emergence of multiple highland Anopheles species by creating larval habitat, common land uses in the western Andes were surveyed for standing water and potential larval habitat suitability (Chapter 5). Rivers and road edges provided large amounts of potentially suitable anopheline habitat in the western Andes, while cattle pasture also created potentially suitable habitat in irrigation canals and watering ponds. Other common land uses surveyed (banana farms, sugarcane plantations, mixed tree plantations, and empty lots) were usually established on steep slopes and had very little standing water present. Using distribution and larval habitat data, a GIS-based larval habitat distribution model for the common western species was constructed in ArcGIS v.l 0 (ESRI 2010) using derived data layers from field measurements and other sources (Chapter 6). The additive model predicted 76.4 - 97.9% of the field-observed collection localities of An. albimanus, An. pseudopunctipennis and An. punctimacula, although it could not accurately distinguish between species-absent and speciespresent sites due to its coarse scale. The model predicted distributional expansion and/or shift of one or more anopheline species into the following highland valleys with climate warming: Mira/Chota, Imbabura province, Tumbaco, Pichincha province, Pallatanga and Sibambe, Chimborazo province, and Yungilla, Azuay province. These valleys may serve as targeted sites of future monitoring to prevent highland epidemics of malaria. The human perceptions of malaria and mosquitoes in relation to land management practices were assessed through an interview-based survey (n=262) in both highlands and lowlands, of male and female land owners and managers of five property types (Chapter 7). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. In conclusion, this interdisciplinary thesis examines the occurrence of Anopheles species in the lowland transition area and highlands in Ecuador, from a historic, geographic, ecological and sociological perspective.
Resumo:
‘The Father of Canadian Transportation’ is a term commonly associated with William Hamilton Merritt. Although he is most known for being one of the driving forces behind the building of the first Welland Canal, he was many things throughout his life; a soldier, merchant, promoter, entrepreneur and politician to name a few. Born on July 3, 1793 at Bedford, Westchester County, N.Y. to Thomas Merritt and Mary Hamilton, Merritt’s family relocated to Canada shortly after in 1796. The move came after Merritt’s father petitioned John Graves Simcoe for land in Upper Canada after serving under him in the Queen’s Rangers during the American Revolution. The family quickly settled into their life at Twelve Mile Creek in St. Catharines. Merritt’s father became sheriff of Lincoln County in 1803 while Merritt began his education in mathematics and surveying. After some brief travel and further education Merritt returned to Lincoln County, in 1809 to help farm his father’s land and open a general store. While a farmer and merchant, Merritt turned his attention to military endeavours. A short time after being commissioned as a Lieutenant in the Lincoln militia, the War of 1812 broke out. Fulfilling his duty, Merritt fought in the Battle of Queenston Heights in October of 1812, and numerous small battles until the Battle of Lundy’s Lane in July 1814. It was here that Merritt was captured and held in Cheshire, Massachusetts until the war ended. Arriving back in the St. Catharines area upon his release, Merritt returned to being a merchant, as well as becoming a surveyor and mill owner. Some historians hypothesize that the need to draw water to his mill was how the idea of the Welland Canals was born. Beginning with a plan to connect the Welland River with the Twelve mile creek quickly developed into a connection between the Lakes Erie and Ontario. Its main purpose was to improve the St. Lawrence transportation system and provide a convenient way to transport goods without having to go through the Niagara Falls portage. The plan was set in motion in 1818, but most living in Queenston and Niagara were not happy with it as it would drive business away from them. Along with the opposition came financial and political restraints. Despite these factors Merritt pushed on and the Welland Canal Company was chartered by the Upper Canadian Assembly on January 19, 1824. The first sod was turned on November 30, 1824 almost a year after the initial chartering. Many difficulties arose during the building of the canal including financial, physical, and geographic restrictions. Despite the difficulties two schooners passed through the canal on November 30, 1829. Throughout the next four years continual work was done on the canal as it expended and was modified to better accommodate large ships. After his canal was underway Merritt took a more active role in the political arena, where he served in various positions throughout Upper Canada. In 1851, Merritt withdrew from the Executive Council for numerous reasons, one of which being that pubic interest had diverted from the canals to railways. Merritt tried his hand at other public works outside transportation and trade. He looked into building a lunatic asylum, worked on behalf of War of 1812 veterans, aided in building Brock’s monument, established schools, aided refugee slaves from the U.S. and tried to establish a National Archives among many other feats. He was described by some as having “policy too liberal – conceptions too vast – views too comprehensive to be comprehensible by all”, but he still made a great difference in the society in which he lived. After his great contributions, Merritt died aboard a ship in the Cornwall canal on July 5, 1862. Dictionary of Canadian Biography Online http://www.biographi.ca/EN/ShowBio.asp?BioId=38719 retrieved October 2006 Today numerous groups carry on the legacy of Merritt and the canals both in the past and present. One such group is the Welland Canals Foundation. They describe themselves as: “. . . a volunteer organization which strives to promote the importance of the present and past Welland Canals, and to preserve their history and heritage. The Foundation began in 1980 and carries on events like William Hamilton Merritt Day. The group has strongly supported the Welland Canals Parkway initiative and numerous other activities”. The Welland Canals Foundation does not work alone. They have help from other local groups such as the St. Catharines Historical Society. The Society’s main objective is to increase knowledge and appreciation of the historical aspects of St. Catharines and vicinity, such as the Welland Canals. http://www.niagara.com/~dmdorey/hssc/dec2000.html - retrieved Oct. 2006 http://www.niagara.com/~dmdorey/hssc/feb2000.html - retrieved Oct. 2006
Resumo:
The St. Lawrence Seaway is a system of locks, canals and channels. Construction of the seaway began in 1954 and it opened on April 25th, 1959. It consists of a 189 mile (306 kilometer) stretch of the seaway between Montreal and Lake Ontario. The Seaway is considered to be an engineering feat with 7 locks in the Montreal – Lake Ontario section which lift vessels to 246 feet (75 meters) above sea level. The 28 mile (44 kilometer) Welland Canal is the fourth version of a link between Lake Ontario and Lake Erie. Today there are 8 Canadian locks which lift ships 326 feet (100 meters) over the Niagara Escarpment. The St. Lawrence Seaway Authority is a Canadian Government Crown Corporation which is financially self-sufficient. It depends on the tolls charged to the users of the Seaway for its revenue and operating expenses.
Resumo:
The Welland Canal Company was formed in 1824 by William Hamilton Merritt. Construction of the first Welland Canal began in 1829 and was completed in 1834. The canal ran south from Port Dalhousie along Twelve Mile Creek to St. Catharines. An extension was built in 1833 to Gravelly Bay, now Port Colborne. As ships became larger and the wooden locks deteriorated, the need for a new canal became apparent. In 1839, the government purchased the Welland Canal Company’s assets and began making plans for the construction of a second canal. Construction began in 1841 and was completed by 1845. In 1887, a third Welland Canal was completed, which operated until 1932, when a fourth canal was completed. This canal remains in operation today.
Resumo:
The recipient of the letters is John Henry Dunn who was born on St. Helena (a British territory island of volcanic origin located in the South Atlantic Ocean) in 1792 to John Charles Dunn and Elizabeth Bazette. He was married to Charlotte Roberts on May 4th, 1820 and they had 6 sons and 2 daughters. He came to Canada in 1820 in which year he became the Receiver General for Canada. He held this position until 1841.Charlotte died in 1835. In 1822 he was named to the Province’s Legislative Council. He was president of the Welland Canal Company from 1825-1833. In 1836 he was named to the executive council of Upper Canada but resigned 3 weeks later with fellow counselors when lieutenant governor Sir Francis Bond refused the advice of the council. Dunn was made the Receiver General for the newly formed Province of Canada in 1841, and was elected to represent Toronto in the legislative assembly that year. He married his second wife on March 9th, 1842. Her name was Sophie-Louise Juchereau Duchsnay. They had a son and a daughter. In 1843 he resigned, and was not re-elected in 1844. He returned to England with his family and died in London on April 21, 1854. Dunn was a supporter of the Welland Canal, St. Lawrence Canals and other public improvements. Between the passage of the Canada Trade Act and the Act of the Union he had tried to insure that projects received funding despite financial constraints. He claimed that he has saved Upper Canada from bankruptcy. His son, Alexander Roberts Dunn received the Victoria Cross for his role in the Charge of the Light Brigade at Balaclava. Dunn Street in Niagara Falls is named after John Henry Dunn. The town and township of Dunnville were also named for him. Sources: http://biographi.ca/009004-119.01-e.php?id_nbr=3889 http://www.niagarafrontier.com/cityfalls.html
Resumo:
The Woodruff Family Collection: From the time the Woodruff Family came to Canada from the United States in 1795, they took an active role in the forming of their communities both in a civic and social manner. This is evident through the documents contained in this collection. The Woodruffs played an active role in the battles fought in Upper Canada and they were an integral part of the Village of St. Davids. They were educated, business-minded and socially engaged. They accumulated much of their fortune through land dealings. Much of this collection focuses on Samuel DeVeaux Woodruff who was principally a businessman. His dedication to his work is shown through his numerous undertakings. He made his mark on the Niagara Peninsula through his work on the railways, roads, marsh land revisions, canals and the paper industry. He was also involved with the founding of the Long Point Company and he took control of building DeVeaux Hall down to the last detail. His offspring inherited his work ethic and his business acumen. The people who married into the Woodruff Family also possessed key social, political and business ties. Anne and Margaret Clement were from a staunch Loyalist background. Samuel Zimmerman was instrumental to the founding of Niagara Falls and Judge Samuel DeVeaux left behind a legacy for poor and homeless boys in Niagara Falls, New York. The Woodruff Family undoubtedly left a mark on the Niagara Peninsula. This collection brings to light many endeavours of the family and their varied contributions.
Resumo:
Louis started the Niagara News Bureau in 1936. It was later named the Niagara Editorial Bureau and the Ontario Editorial Bureau. Lou was very active within the community. He promoted the Welland Canals and was secretary for the Mackenzie Heritage Printery and Newspaper Museum. He was honoured with numerous awards and accolades including a medallion from the Pope for his service to the Roman Catholic Church and an honourary degree from Brock University.
Resumo:
Several irrigation treatments were evaluated on Sovereign Coronation table grapes at two sites over a 3-year period in the cool humid Niagara Peninsula of Ontario. Trials were conducted in the Hippie (Beamsville, ON) and the Lambert Vineyards (Niagara-on-the-Lake, ON) in 2003 to 2005 with the objective of assessing the usefulness of the modified Penman-Monteith equation to accurately schedule vine irrigation needs. Data (relative humidity, windspeed, solar radiation, and temperature) required to precisely calculate evapotranspiration (ETq) were downloaded from the Ontario Weather Network. One of two ETq values (either 100 or 150%) were used in combination with one of two crop coefficients (Kc; either fixed at 0.75 or 0.2 to 0.8 based upon increasing canopy volume) to calculate the amount of irrigation water required. Five irrigation treatments were: un irrigated control; (lOOET) X Kc =0.75; 150ET X Kc =0.75; lOOET X Kc =0.2-0.8; 150ET X Kc =0.2-0.8. Transpiration, water potential (v|/), and soil moisture data were collected each growing seasons. Yield component data was collected and berries from each treatment were analyzed for soluble solids (Brix), pH, titratable acidity (TA), anthocyanins, methyl anthranilate (MA), and total volatile esters (TVE). Irrigation showed a substantial positive effect on transpiration rate and soil moisture; the control treatment showed consistently lower transpiration and soil moisture over the 3 seasons. Transpiration appeared accurately reflect Sovereign Coronation grapevines water status. Soil moisture also accurately reflected level of irrigation. Moreover, irrigation showed impact of leaf \|/, which was more negative throughout the 3 seasons for vines that were not irrigated. Irrigation had a substantial positive effect on yield (kg/vine) and its various components (clusters/vine, cluster weight, and berries/cluster) in 2003 and 2005. Berry weights were higher under the irrigated treatments at both sites. Berry weight consistently appeared to be the main factor leading to these increased yields, as inconsistent responses were noted for some yield variables. Soluble solids was highest under the ET150 and ET100 treatments both with Kc at 0.75. Both pH and TA were highest under control treatments in 2003 and 2004, but highest under irrigated treatments in 2005. Anthocyanins and phenols were highest under the control treatments in 2003 and 2004, but highest under irrigated treatments in 2005. MA and TVE were highest under the ET150 treatments. Vine and soil water status measurements (soil moisture, leaf \|/, and transpiration) confirmed that irrigation was required for the summers of 2003 and 2005 due to dry weather in those years. They also partially supported the hypothesis that the Penman-Monteith equation is useful for calculating vineyard water needs. Both ET treatments gave clear evidence that irrigation could be effective in reducing water stress and for improving vine performance, yield and fruit composition. Use of properly scheduled irrigation was beneficial for Sovereign Coronation table grapes in the Niagara region. Findings herein should give growers some strong guidehnes on when, how and how much to irrigate their vineyards.
Resumo:
A study was devised to evaluate influences of irrigation and fertigation practices on Vitis vinifera and Vitis labruscana grapes in the Niagara Peninsula. A modified FAO Penman- Monteith evapotranspiration formula was used to calculate water budgets and schedule irrigations. Five deficit irrigation treatments (non-irrigated control; deficits imposed postbloom, lag phase, and veraison; fiiU season irrigation) were employed in a Chardonnay vineyard. Transpiration rate (4-7 /xg H20/cmVs) and soil moisture data demonstrated that the control and early deficit treatments were under water stress throughout the season. The fiiU season irrigation treatment showed an 18% (2001) and 19% (2002) increase in yield over control due to increased berry weight. Soluble solids and wine quality were not compromised, and the fiiU season treatment showed similar or higher °Brix than all other treatments. Berry titratable acidity andpH also fell within acceptable levels for all five treatments. Irrigation/fertigation timing trials were conducted on Concord and Niagara vines in 2001- 02. The six Concord treatments consisted of a non-irrigated control, irrigation fi^om Eichhom and Lorenz (EL) stage 12 to harvest, and four fertigation treatments which applied 70 kg/ha urea. The nine Niagara treatments included a non-irrigated control, two irrigated treatments (ceasing at veraison and harvest, respectively) and six fertigation treatments of various durations. Slight yield increases (ca. 10% in Concord; 29% in Niagara) were accompanied by small decreases in soluble solids (1.5°Brix), and methyl anthranilate concentrations. Transpiration rate and soil moisture (1 1.9-16.3%) data suggested that severe water stress was present in these Toledo clay based vineyards.
Resumo:
Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.
Resumo:
This copy is signed in the upper left hand corner by Mr. Dickson. Mr. Robert Dickson was one of the directors of the Welland Canal Office. The report covers meetings which were held: January 15-16, and 19 of 1830. The meetings were attended by Messrs. Blacklock, Mackenzie, Woodruff, Longley and Hopkins. Balance sheets are also included within the report. The report of the Welland Canal Company for 1829 is also included within this document, and this is dated December 31, 1829. Names at the end of the 1929 report are members of the Welland Canal Office and they include: John Henry Dunn, president; Henry J. Boulton, vice-president and William Allan, George Keefer, John J. Lefferty and Robert Dickson who were directors The report is dated January 26, 1830, and submitted by Thomas Horner, chairman of the Commons House of Assembly.
Resumo:
The Welland Canals Society was a coalition of business, tourism, heritage, and recreational groups that joined with the Regional Government in 1986 to promote the redevelopment of the Welland Canals Corridor. The mandate of the Society was to provide leadership and assistance to the public and private sectors in achieving heritage-sensitive and tourism/recreation-related economic development in the Welland Canals Corridor. The Society folded in 1991 due to government funding cuts.
Resumo:
John N. Jackson was born and raised in London England. He served in the Royal Navy, acquired a B.A. and a Ph.D, conducted research for a city planning office and lectured at the University of Manchester. He joined Brock University’s faculty in 1965 as a Professor of Applied Geography. Since his retirement in 1991 he has been Professor Emeritus to Brock. Throughout his time in academia Jackson has focused his research on the history of the modern city, both throughout Europe and Canada. Jackson has also completed specific research on the Niagara Peninsula; including industrial geography, recreation along the Lake Erie shore, St. Catharines early history, the Welland Canals, railway development, comparisons across the Niagara River. While living in the Niagara region Jackson has become involved in many community events. He has been the Director for the Bruce Trail Association, President of the Welland Canals Foundation, and been involved in local historical groups throughout the Niagara region.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Port Dalhousie and Grantham Township. Identified structures associated with the Canal include Lock 1, Lighthouse, Lighthouse Keeper's House, East and West Piers, Harbour, Waste Weir, Store House, Collector's Office, Collector Assistant Office, Lock Tender's House and the new towing path. Features of the First Welland Canal are noted in red ink and includes the old Harbour, old Lock 1, old towing path and the original bed of the Twelve Mile Creek. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks and businesses are also identified and include streets and roads (ex. Lock Street and Colonel Clark's Cattle Road), Alex Muir's Dry Dock, RandJ Laurie Flouring Mill, R. Laurie and Company Grist Mill, A. Morrison Saw Mill, Johnson's Tavern, a store and a church. Properties and property owners of note are: Concession 1 Lots 21 and 22, John Christie, John Clark, N. Pawling, William Pawling, W. Carter, G.A. Clark, J. Maven, Mrs. Wood, James Drabble and J. Woodall.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Port Dalhousie and Grantham Township. Identified structures associated with the Canal include Lock 1, East and West Piers, Collector's Office, Lock Tender's House and the new towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks and businesses are also identified and include streets and roads (ex. Road to St. Catharines, Side Line, Old Road to Port Dalhousie, Road to Niagara), the Welland Railway and its structures (ex. freight sheds, wood shed, raised platform, elevator, cranes, water tank, turn table, and passenger station), G. A. Clark's Wood Yard, Clark's Wood Office, Alex Muir's Dry Dock, Donald, Andrews and Ross' Dry Dock, RandJ Laurie Flouring Mill, R. Laurie and Company Grist Mill and A. Morrison Saw Mill. A New Road to St. Catharines is featured in red ink. Properties and property owners of note are: Concession 1 Lots 19, 20 and 21, John Christie, and John Clark.