22 resultados para Intramolecular Friedel-crafts Arylation
em Brock University, Canada
Resumo:
Aluminosilicate catalysts containing supported ZnCl2 and metal fluoride salts have been prepared using a sol-gel based route, tested and characterized. The activities of these ZnCl2 + metal fluoride catalysts, while greater than "Clayzic" (ZnCI2 supported on montmorillonite KIO) are not as good as supported ZnCl2 only supported on aluminosilicate. Alumina supports have also been prepared via a sol-gel route using various chemical additives to generate a mesoporous structure, loaded with ZnCl2 and tested for activity. The activities for these alumina-supported catalysts are also significantly higher than that of "Clayzic", an effective Friedel-Crafts catalyst. Characterizations of these two types of catalysts were done by magic angle spinning (MAS) NMR, diffuse reflectance infrared (DRIFT) spectroscopy and additionally for the alumina nitrogen adsorption studies were done. Supported aluminum trichloride was also investigated as an alternative to the traditional use of aluminum trichloride.
Resumo:
This thesis describes the chemoenzymatic synthesis of three morphine alkaloids. The total synthesis of dihydrocodeine and hydrocodone was accomplished starting from bromobenzene in 16 and 17 steps, respectively. The key steps included a microbial oxidation of bromobenzene by E. coli JM109 (pDTG601A), a Kazmaier-Claisen rearrangement of glycinate ester to generate C-9 and C-14 stereo centers, a Johnson-Claisen rearrangement to set the C-13 quaternary center, and a C-10/C-11 ring closure via a Friedel-Crafts reaction. In addition, the total synthesis of ent-hydromorphone starting from β-bromoethylbenzene in 12 steps is also described. The key reactions included the enzymatic dihydroxylation of β-bromoethylbenzene to the corresponding cis-cyclohexadienediol, a Mitsunobu reaction, and an oxidative dearomatization followed by an intramolecular [4+2] cycloaddition.
Resumo:
ZnF2, CdF2, and CUF2 have been adsorbed onto the surface of montmorillonite K10, and the infrared and 19F, 27 AI, and 29Si MAS NMR spectra of the reagents over a range of loadings have been obtained. CUF2 was observed to attack the Si02 layer and form the complex CuSiF6, Zn F2 tends to attack the aluminium oxide layer, in which Zn isomorphously replaces AI, and forms AIF3 and AIF4 - complexes. All the spectroscopic evidence ruled out the formation of any AI-F and/or Si-F free species as CdF2 is adsorbed on the surface of montmorillonite K10. The reactivity of MF2-K10 reagents towards Friedel-Crafts benzylation of benzene with benzyl chloride varied from one reagent to another. ZnF2-K10 was observed to be the most reactive and CUF2 was the least reactive.
Resumo:
A number of 2-chlorobenzophenones, containing electron releasing groups (e.g. hydroxy, thiomethoxy and methoxy) in the 4' - position, were prepared by the Friess rearrangement, or the Friedel-Crafts reaction. These ketones, when treated with potassamide in liquid ammonia, underwent partial Haller-Bauer scission, unlike 2-chlorobenzophenone which is known to undergo complete scission. Under similar conditions 4-nitrobenzophenone also underwent partial scission, but the main reaction in this case was nucleophilic amination of the nitro containing ring. This amination reaction was shown not to be a useful general reaction for aromatic nitro compounds. 3-Methylxanthone was then prepared by treatment of 2- and 3- chloro-2'-hydroxy-5'-methylbenzophenone with . little, if any, attendant scission. The corresponding 2fluoro- compound also gave the xanthone, but as the 3-fluoro compound did not, it was concluded that the 2-fluoro compound reacted through a nucleophilic substitution mechanism, rather than the benzyne mechanism invoked for the chloro and bromo compounds. 3-Methylthioxanthone was synthesised by treatment of methyl 4-tolyl sulphide and 2-chlorobenzoyl chloride with aluminum chloride in carbon disu1phide, followed.by heating. This compound was also prepared by treatment of 3-chloro-2'thiomethoxy- 5'-methylbenzophenone with potassamide in liquid ammonia.
Resumo:
A number of synthetically useful ring systems can be prepared via the intramolecular insertion of a metal-stabilized carbenoid into a heteroaromatic systems. The chemical outcome of these reactions are dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the carbenoid moiety with the aromatic fragment. Our work with furanyl and thienyl systems containing a single methylene tether have allowed for some rather atypical chemistry. For example, treatment of l-diazo-3-(2-thienyl)-2-propanone (6) with catalytic rhodium (II) acetate yields 5,6- dihydro-4^-cyclopenta[Z>]thiophen-5-one (3) while, the isomeric l-diazo-3-(3-thienyl)-2- propanone(15) gives a spiro-disulphide (20). Novel chemistry was also exhibited in the analogous furanyl systems. While treatment of l-diazo-3-(3-furanyl)-2-propanone (52) with Rh2(OAc)4 resulted in the expected 2-(4-Oxo-2-cyclopentenyliden)acetaldehyde (54), isomeric l-diazo-3-(2- furanyl)-2-propanone (8) undergoes vinylogous Wolff rearrangement to give a mixture of 6a-methyl-2,3,3a,6a-tetrahydrofuro[2,i-^>]furan-2-one (44) and 2-(2-methyl-3-furyl)acetic acid (43). Rhodium acetate catalyzed decomposition of l-diazo-3-(3-benzofuranyl)-2- propanone (84) and l-diazo-3-(2-benzofuranyl)-2-propanone (69)also allows for vinylogous Wolff rearrangement, a chemistry unseen in benzofuranyl systems with longer tethers. A number of interesting products were isolated from the trapping of intermediate ketenes. Decomposition of l-diazo-3-(3-benzothienyl)-2-propanone (100) resulted in the formation of 2,3-dihydro-l//-benzo[^]cyclopenta[^thiophen-2-one (102). However, in addition to (102), a dimer was also generated from the decomposition of l-diazo-3-(2- benzothienyl)-2-propanone (109). The insight into the mechanistic underpinnings of the above reactions are provided by molecular modeling at a PM3 level.
Resumo:
Recent studies have shown that the rhodium (II) acetate decomposition chemistry observed for a-diazoketones tethered to thienyl, furanyl, and benzofuranyl moieties is dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the diazoketone moiety with the aromatic fragment. The present thesis expands on these results and focuses on a-diazoketones tethered to benzothiophenes, pyrroles and indoles by a methylene linker. In the case of benzothiophenes, it was shown that the rhodium catalyst decomposition of I-diazo-4-(3-benzothienyl)-2-butanone (146) and 1-diazo-4-(3benzothienyl)- 2-butanone (152) allow for the isolation of 1,2,3a,3b-tetrahydro-3Hbenzo[ b]cyclopenta[1,3]cyclopropa- [1 ,2-d]thiophen-3-one (147) and 1,2,3a,3btetrahydro- 3H-benzo[b]cyclopenta[1,3]cyclopropa[1,2-d]thiophen-3-one (153). However treatment of 1-diazo-3-(3-Benzothienyl)-2-Propanone (165) with Rh(II) acetate results in the formation of 2,3-Dihydro-1H-benzo[b]cyclopenta[d]thiophen-2-one (159), while 1diazo- 3-(2-Benzothienyl)-2-Propanone with the same condition gives 5,5-bis( 1benzothiophen- 2-ylmethyl)-2(5H)-furanone (166) along with the tricycle 159. The chemistry of the pyrrolyl and the indolyl moieties linked to terminal adiazoketone systems was also investigated. The decomposition of I-diazo-(2-pyrrolyl)-2propanone (173) results in the formation of two products; the N-H insertion product IHpyrrolizin- 2(3H)-one (176) and the alkylation product 4,6-dihydrocyclopenta[b]pyrrol5( 1 H)-one (180). When 1-Diazo-3-(3-indoly)-3-propanone (194) is treated with catalytic amount of Rh (II) 3,4-dihydrocyclopenta[b]indol-2(1H)-one (193) is isolated quantitatively. The later reaction when monitored using IH NMR the intermediate 200 can be seen whose structure was confirmed by the comparison to series of model compounds. The mechanisms underlying these reactions as well as their synthetic utility is discussed.
Resumo:
The present studies describe recent progress toward the synthesis of the thebaine. Model substrates were synthesized using pyridazine derivatives as a starting material, which allowed to assess the key Diels-Alder reaction as a route to construct the thebaine core.
Resumo:
The first example of a [5+2] cycloaddition reaction wherein the olefin of the vinylcyclopropyl moiety is constrained in a carbocycle was explored, and possible reasons on the lack of reactivity of the substrate were studied. A simple model substrate was synthesized and subjected to cycloaddition conditions to determine if the reason for the lack of reactivity was related to the complexity of the substrate, or if the lack of “conjugative character” of the cyclopropyl ring with respect to the olefin is responsible. A more complex bicyclic substrate possessing an angular methyl group at the ring junction was also synthesized and explored, with evidence supporting the current theory of deconjugation of the cyclopropyl moiety.
Resumo:
This thesis describes work towards the total synthesis of a 7-aza analogue of the Amaryllidaceae alkaloid narciclasine, a potent anticancer compound which suffers from a poor solubility profile. A key strategy in the formation of the C-ring is the biotransformation of bromobenzene by E.coli JM109. The densely substituted heterocyclic A-ring is obtained by sequential directed ortho-metalation and the fragment union accomplished with an amide coupling and subsequent intramolecular Heck reaction.
Resumo:
Two efficient, regio- and stereo controlled synthetic approaches to the synthesis of racemic analogs of pancratistatin have been accomplished and they serve as the model systems for the total synthesis of optically active 7-deoxy-pancratistatin. In the Diels-Alder approach, an efficient [4+2] cycloaddition of 3,4-methylenedioxyco- nitrostyrene with Danishefsky's diene to selectively form an exo-nitro adduct has been developed as the key step in the construction of the C-ring of the target molecule. In the Michael addition approach, the key step was a conjugate addition of an organic zinc-cuprate to the 3,4-methylenedioxy-(B-nitrostyrene, followed by a diastereocontroUed closure to form the cyclohexane C-ring of the target molecule via an intramolecular nitro-aldol cyclization on a neutral alumina surface. A chair-like transition state for such a cyclization has been established and such a chelation controlled transition state can be useful in the prediction of diastereoselectivity in other related 6-exo-trig nitroaldol reactions. Cyclization of the above products fi^om both approaches by using a Bischler-Napieralski type reaction afforded two lycoricidine derivatives 38 and 50 in good yields. The initial results from the above modeling studies as well as the analysis of the synthetic strategy were directed to a chiral pool approach to the total synthesis of optically active 7-deoxy-pancratistatin. Selective monsilylation and iodination of Ltartaric acid provided a chiral precursor for the proposed key Michael transformation. The outlook for the total synthesis of 7-deoxy-pancratistatin by this approach is very promising.A concise synthesis of novel designed, optically pure, Cz-symmetrical disulfonylamide chiral ligands starting from L-tartaric acid has also been achieved. This sequence employs the metallation of indole followed by Sfj2 replacement of a dimesylate as the key step. The activity for this Cz-symmetric chiral disulfonamide ligand in the catalytic enantioselective reaction has been confirmed by nucleophilic addition to benzaldehyde in the disulfonamide-Ti (0-i-Pr)4-diethylzinc system with a 48% yield and a 33% e.e. value. Such a ligand tethered with a suitable metal complex should be also applicable towards the total synthesis of 7-deoxy-pancratistatin.
Resumo:
The present thesis describes our latest results in the chemistry of morphine alkaloids. An enantiodivergent synthesis of codeine utilizing a cis-cyclohexadiene diol derived from microbial whole cell oxidation of ~-bromoethylbenzene,as starting material is discussed. The total synthesis of (+)-codeine in 14 steps featuring a Mitsunobu inversion and two intramolecular Heck cyclizations is presented. Investigation of a regioselective nucleophilic opening of a homochiral vinyl oxirane, which led to a total synthesis of the natural isomer of codeine, is detailed. Furthermore, described herein are novel methodologies designed for the transformation of naturally occurring opiates into medicinally relevant derivatives. Two studies on the conversion of thebaine into the commercially available analgesic hydrocodone, two novel ·transition metal catalyzed N-demethylation procedures for opioids, and the development of a catalytic protocol for N-demethylation and Nacylation of morphine and tropane alkaloids are presented. In addition, reactions of a menthol-based version of the Burgess reagent with epoxides are discussed. The synthetic utility of this novel chiral derivative of the Burgess reagent was demonstrated by an enantiodivergent formal total synthesis of balanol. ii
Resumo:
This research was directed towards the investigation and development of an aryne route to the syntheses of aporphi ne and dibenzopyrrocolinium (dibenzoindolizinium) alkaloids and to the stability of the latter under the conditions used for aryne formation. The work c an be divided into three main sections . i) - Synthesis of Glaucine 6-Bromo-3,4-dimethoxyphenylacetic acid, prepared by the action of bromine i n acetic acid on3,4-dimethoxyphenylacetic a cid, was converted into its acid chloride by t he action of thionyl chloride. This on treatment with 3,4- dimethoxyphenylethylamine pr ovided N-(3, 4-dimethoxyphenylethyl)- 2-(2-bromo-4,S-dimethoxyphenyl)-acetamide which on dehydration with phosphoryl chloride (Bischler Napieralski reaction) in dry benzene afforded l -(2-bromo-4,S-dimethoxybenzyl)- 3,4-dihydro-6,7-dimethoxyisoquinoline, isolated as hydrochl oride. A new method o f destroying the excess of phosphoryl chloride was developed which proved to be quite useful. Methylation of the dihydroisoquinoline'with methyl iodide in methanol , and subsequent reduction with sodium borohydride provided (±)-6-bromolaudanosine. Act ion of potassamide or sodamide in anhydrous liquid ammonia on (±)-6-bromolaudanosine yielded the corresponding amino derivative along with other products. Diazotization and ring closure of (±)-6-aminolaudanosine then a f forded (±)-glaucine which was isolated as methiodide. ii) - Intramolecular Capture of Aryne During Glaucine Synthesis, and Subsequent Reactions . This section deals with the by-products formed under the conditions of the aryne stage of t he glaucine synthesis. The crude product, obtained in the reaction of potassamide or sodamide in liquid ammonia on (±)-6-bromolaudanosine, was s eparated by chromatography, Three products were separated and identified. a ) - 5,6-Dimethoxy-2-( 3,4-dimethoxy-6-ethylphenyl)-lmethylindole. Two mechanisms are proposed for the formation of this interesting product. This compound also was prepared by the action of potassamide in l,iquid ammonia on 5,6 ,l2,l2atetrahydro- 2,3,9,lO-tetramethoxy-7-methyldibenz[b,g]indolizinium i odide . b) - 5,6-Dimethoxy-2-(3,4-dimethoxy-6-vinylphenyl)-lmethylindoline. Its formation represented a new method of Hofmann degradation . Further confirmation of structure was done by performing the normal Hofmann reaction on 5, 6,12,12a-tetrahydro -2/3,9,lO-tetramethoxy ~7-methyldibe nz[ b,g]indolizinium iodide. The indoline prepared i n this way was identical in all respects with that prepared above . c) - 1- (2-amino-4,5-dimethoxybenzyl ) -l,2,3,4-tetrahydro-2- methyl-6,7-dimethoxyisoquinoline, was converted t o glaucine as stated in section 1 . iii) - Attempt:,ed Sxnthesis of Liriodenine Piperonal was converted into 3,4-methylenedioxyinitrostyrene which on reduction with lithium aluminium hydride provided 3,4-methylenedioxyphenylethylamine. The method of extraction after the reduction was improved t o some extent. The amine on condensation with m-chlorophenylacetyl chloride, prepared by the action of oxalyl chloride on 3,4-methylenedioxyphenylacetic acid, provided N-[ ~ -(3,4-methylenedioxyphenyl)- e thyl)-3-chlorophenylacetamide. This on dehydration with phosphoryl chloride in dry benzene followed by air oxidation afforded l-(3-chlorobenzoyl)-6,7-methylenedioxyi soquinoline. This compound on r eaction with potassamide in liquid ammonia afforded a crude product from which. one product was separated by chromatography i n a pure condition . This yellow compound analysed as,c17Hl ON2021 and was t he main product i n the reaction ; a t entative structure is proposed. A second compound, not obtained in pure condition, was submitted to Pschorr reaction in the hope of obtaining liriodenine, but without success.
Resumo:
The effects of sample solvent composition and the injection volume, on the chromatographic peak profiles of two carbamate derivatives, methyl 2-benzimidazolecarbamate (MBC) and 3-butyl-2,4-dioxo[1,2-a]-s-triazinobenzimidazole (STB), were studied using reverse phase high performance liquid chromatograph. The study examined the effects of acetonitrile percentage in the sample solvent from 5 to 50%, effects of methanol percentage from 5 to 50%, effects of pH increase from 4.42 to 9.10, and effect of increasing buffer concentration from ° to 0.12M. The effects were studied at constant and increasing injection mass and at four injection volumes of 10, 50, 100 and 200 uL. The study demonstrated that the amount and the type of the organic solvents, the pH, and the buffer strength of the sample solution can have a pronounced effect on the peak heights, peak widths, and retention times of compounds analysed. MBC, which is capable of intramolecular hydrogen bonding and has no tendency to ionize, showed a predictable increase .in band broadening and a decrease in retention times at higher eluting strengths of the sample solvent. STB, which has a tendency to ionize or to strongly interact with the sample solvent, was influenced in various ways by the changes in ths sample solvent composition. The sample solvent effects became more pronounced as the injection volume increased and as the percentage of organic solvent in the sample solution became greater. The peak height increases for STB at increasing buffer concentrations became much more pronounced at higher analyte concentrations. It was shown that the widely accepted procedure of dissolving samples in the mobile phase does not yield the most efficient chromatograms. For that reason samples should be dissolved in the solutions with higher aqueous content than that of the mobile phase whenever possible. The results strongly recommend that all the samples and standards, regardless whether the standards are external or internal, be analysed at a constant sample composition and a constant injection volume.
Resumo:
This research was directed mainly towards the investigation of the reacti.ons of· substituted chlorobenziophenones under strongly basi,c conditions. The work 'can be divided into two main sections. The Introduction deals mainly with historical studies on aryne chemistry and the Haller-Bauer reaction. Secti.on I i.s concerned with syntheses of 2-benzamido-2'chlorobenzophenone and 2-benzamido~3'-chlorobenzophenone,and with thei,r respective reactions wi.th potassium amide in ammonia. o-Chlorophenylacetic acid was converted to the acid chloride and then by Friedel-Craftsreaction with benzene to w-(o-chlorophenyl)acetophenone. Reaction wi.th phenylhydrazine and Fischer cyclization gave 3- (0chlorophenyl)- 2-phenylindole, which was ozonized to 2-benzamido-2'chlorobenzophenone. The isomeric 3' -chlor,..o ke: tone was similarly synthesised from m-chlorophenylacetic acid. Both the 2'- and 3' -ch.loroketones gave N-benzoylacridone on treatment with potassium amide in ammonia; an aryne mechanism is involved for the 3'-chloroketone but aryne and nucleophilic substitution mechanisms are possible for the 2'-chloroketone. Hydrolysis of the 2'- and 3'-chloroketones gave 2-amino-2'chlorobenzophenone and 2-amino-3'-chlorobenzophenone respectively. A second new acridone synthesis is given in the Appendix involving reactions of these two ketones with potassium t-butoxide in t-butylbenzene. i Section 2 deals with the investigation of the reaction of some tricyclic ch1orobenzophenones with potassium amide in liquid ammonia. These were 1-ch1orof1uorenone; which was pr~pared in several steps from f1uoranthene, and 1- and 2-ch1oroanthraquinones. 1-Ch1orof1uorenone gave 1-aminof1uorenone ; 1-ch1oroanthraquinone gave 1- and 2-aminoanthraquinones; 2-ch1oroanthraquinone was largely recovered from the attempted reaction.
Resumo:
This research was directed towards the investigation of the Smiles rearrangement in hydrazidic systems and the synthesis of related heterocyclic compounds. The work can be conveniently divided into two main sections. Section 1 of the thesis relates to the synthesis and examination of the O+N migration of phenoxy- derivatives of hydrazidic halides. In general, hydrazidic halides were found to react with 2-nitrophenol and 4-nitrophenol to give corresponding a-nitrophenoxy- compounds. These a-nitrophenoxy- compounds were found to rearrange in warm base to give the corresponding N-benzoyl compounds via a proposed five-membered transition state. Experiments conducted in styrene revealed no radical contribution to the rearrangement. Cross-over product analysis indicated the rearrangement as intramolecular and consistent with the Smiles rearrangement. The preparation of N-a-chlorobenzylidene-N'-2-nitrophenyl- -N'-(2,4-dibromophenyl)hydrazine from N-benzoyl-N'-2-nitrophenyl- N'-(2,4-dibromophenyl)hydrazine was accomplished using phosphorus oxychloride. Examination of this hydrazidic chloride indicated a marked decrease .in reactivity as compared to the N-a-chlorobenzylidene-N'-phenylhydrazine case. Section 2 concerns itself with the preparation of heterocyclic compounds using an analogy of the five-membered transition state present in the Smiles rearrangement of a substituted benzylidene derivatives A new preparation of 2,4-phenyl1,3,4- oxadiazol-S-one using N-benzoyl-N'-phenylhydrazine and ethyl thiochloroformate is reported. Two new preparations of N-a-thiobenzoyl-N'-(2,4-dibromophenylhydrazine are reported using sodium hydrosulfide in conjunction with N-a-bromobenzylidene-N'-(2,4-dibromophenyl)hydrazine in the first, and phosphorus pentasulfide with N-benzoylN'-( 2,4-dibromophenyl)hydrazine in the second. The latter is preferred due to the formation of a sulfide co-product in the former. Two preparations of 2-phenyl-4-(2,4-dibromophenyl)-1,3,4- thiadiazol-S-one are reported using N-thiobenzoyl-N'-(2,4-dibromophenyl) hydrazine and ethyl chloroformate and ethyl thiochloroformate Two rapid and easy preparations of 2-phenyl-4-(2,4-dibromophenyl)- 1,3,4-triazol-S-one are reported using ethyl chloroformate and ethyl thiochloroformate. Sodium cyanate in conjunction with a-aminobenzylidene-N'-(2,4-dibromophenyl)hydrazine also provided 2-phenyl-4-(2,4-dibromophenyl)-1,3,4-triazol-S-one Section 2 concludes with an examination of two possible mechanistic routes to the prepared heterocycles.