4 resultados para Intertemporal substitution
em Brock University, Canada
Resumo:
The relative ease to concentrate and purify adenoviruses, their well characterized mid-sized genome, and the ability to delete non-essential regions from their genome to accommodate foreign gene, made adenoviruses a suitable candidate for the construction of vectors. The use of adenoviral vectors in gene therapy, vaccination, and as a general vector system for expressing foreign genes have been documented for some time. In this study, the objective was to rescue a BAV3 E1 or E3 recombinant vector carrying the kanamycin resistant gene, a dominant selectable marker with useful applications in studying vectored gene expression in mammalian cells. To accomplish the objective of this study, more information about BAV3 DNA sequences was required in order to make the manipulation of the virus genome accessible. Therefore, sequencing of the BAV3 genome from 1 1 .7% to 30.8% was carried out. Analysis of the determined sequences revealed the primary structure of important viral gene products coded by E2 including BAV3 DNA pol and precursor to terminal protein. Comparative analysis of these proteins with their counterparts from human and non human adenoviruses revealed important insights as to the evolutionary lineage of BAV3. In order to insert the kanamycin resistance gene in either E1 or E3, it was necessary to delete BAV3 sequences to accommodate the foreign gene so as not to exceed the limit of the packaging capacity of the virus. To construct a recombinant BAV3 in which a foreign gene was inserted in the deleted E1 region, an E1 shuttle vector was constructed. This involved the deletion from the viral sequences a region between 1.3% to 9% and inserting the kanamycin resistance gene to replace the deletion. The E1 shuttle vector contained the left (0%- 53.9%) segment of the genome and was expected to generate BAV3 recombinants that can be grown and propagated in cells that can complement the missing E1 functions. To construct a similar shuttle vector for E3 deletion, DNA sequences extending from 78.9% to 82.5% (1281 bp) were deleted from within the E3 region that had been cloned into a plasmid vector. The deleted region corresponds to those that have been shown to be non-essential for viral replication in cell culture. The resulting plasmid was used to construct another recombinant plasmid with BAV3 DNA sequences extending from 37.1% to 100% and with a deletion of E3 sequences that were replaced by kanamycin resistance gene. This shuttle plasmid was used in cotransfections with digested viral DNA in an attempt to rescue a recombinant BAV3 carrying the kanamycin resistance gene to replace the deleted E3. In spite of repeated attempts of transfection, El or E3 recombinant BAV3 were not isolated. It seems that other approaches should be applied to make a final conclusion on BAV3 infectivity.
Resumo:
The work in this thesis deals mainly with nucleophilic substitution of chloroanthraquinones as a route to various starting materials which might rearrange, via aryne intermediates to afford fused-ring heterocy1ic carboxylic acids. 1-Amino-5-chloroanthraquinone was successfully prepared by reacting 1,5-dichloroanthraquinone with sodium aZide in ref1uxing dimethylsulfoxide (DMSO). It could also be prepared from the same starting material by reaction with ammonia (gas) in DMSO in the presence of potassium fluoride. Treatment of l-amino-5-chloroanthraquinone with potassium amide in liquid ammonia or with potassium t-butoxide in t-butylbenzene returned mainly starting material, although in the latter case some 1-amino-5-hydroxyanthraquinone was also isolated. 1-Hydroxy-5-chloroanthraquinone was ultimately prepared by diazotization of the amino-analog. It was recovered almost quantitatively after treatmenu'with potassium amide in liquid ammonia. The reaction with potassium t-butoxide in t-buty1benzene was anomalous and gave 1-hydroxyanthraquinone as the only iso1able product. Acridines were successfully prepared by the action of 70% sulfuric acid on 1,5-bis(p-toluidino)-anthraquinone and 1-p-toluidino-5- ch10roanthraquinone, and in the latter case, cleavage to give an acridinecarboxylate was attempted. Substituted anthraquinones reacted with sodium azide in sulfuric acid to give azepindiones by -NH insertion. Methods for separating and identifying isomeric mixtures of these compounds were examined. Attempted decarbonylation of selected azepindiones to give acridones gave mainly what were thought to be amino-benzophenone derivatives. Chloroanthraquinones were found to react with hexamethylphosphoramide (HMPA) to give mixtures of the dimethylamino- and methylaminoderivatives. Under the same conditions halogeno-nitrobenzenes and nitrophenols were substituted to give the appropriate dimethyl aminobenzenes, except in two cases. 3-Chloronitrobenzene reacted anomalously to give a small amount of 3,3'-dichloroazobenzene and a trace of 4-dimethylamino-nitrobenzene. Pentachlorophenol reacted to give a pentachlorophenylphosphorodiamidate in good yield.
Resumo:
This thesis describes a method involving the preparation of an L-proline-derived imidazolone protected with an N-triethylsilyl group that undergoes diastereoselective lithiation followed by electrophile quench to give C5-substituted products with syn stereochemistry. The N-silylated derivatives may be more easily N-deprotected as compared to previous N-t-Bu analogues to give secondary ureas. These may serve as precursors to N-phenyl chiral bicyclic guanidines or as NHC precursors for synthesis of corresponding complexes.
Resumo:
This thesis describes a method involving the preparation of an L-proline-derived imidazolone protected with an N-triethylsilyl group that undergoes diastereoselective lithiation followed by electrophile quench to give C5-substituted products with syn stereochemistry. The N-silylated derivatives may be more easily N-deprotected as compared to previous N-t-Bu analogues to give secondary ureas. These may serve as precursors to N-phenyl chiral bicyclic guanidines or as NHC precursors for synthesis of corresponding complexes.