10 resultados para Internet (Computer networks)
em Brock University, Canada
Resumo:
The Two-Connected Network with Bounded Ring (2CNBR) problem is a network design problem addressing the connection of servers to create a survivable network with limited redirections in the event of failures. Particle Swarm Optimization (PSO) is a stochastic population-based optimization technique modeled on the social behaviour of flocking birds or schooling fish. This thesis applies PSO to the 2CNBR problem. As PSO is originally designed to handle a continuous solution space, modification of the algorithm was necessary in order to adapt it for such a highly constrained discrete combinatorial optimization problem. Presented are an indirect transcription scheme for applying PSO to such discrete optimization problems and an oscillating mechanism for averting stagnation.
Resumo:
The (n, k)-star interconnection network was proposed in 1995 as an attractive alternative to the n-star topology in parallel computation. The (n, k )-star has significant advantages over the n-star which itself was proposed as an attractive alternative to the popular hypercube. The major advantage of the (n, k )-star network is its scalability, which makes it more flexible than the n-star as an interconnection network. In this thesis, we will focus on finding graph theoretical properties of the (n, k )-star as well as developing parallel algorithms that run on this network. The basic topological properties of the (n, k )-star are first studied. These are useful since they can be used to develop efficient algorithms on this network. We then study the (n, k )-star network from algorithmic point of view. Specifically, we will investigate both fundamental and application algorithms for basic communication, prefix computation, and sorting, etc. A literature review of the state-of-the-art in relation to the (n, k )-star network as well as some open problems in this area are also provided.
Resumo:
The hyper-star interconnection network was proposed in 2002 to overcome the drawbacks of the hypercube and its variations concerning the network cost, which is defined by the product of the degree and the diameter. Some properties of the graph such as connectivity, symmetry properties, embedding properties have been studied by other researchers, routing and broadcasting algorithms have also been designed. This thesis studies the hyper-star graph from both the topological and algorithmic point of view. For the topological properties, we try to establish relationships between hyper-star graphs with other known graphs. We also give a formal equation for the surface area of the graph. Another topological property we are interested in is the Hamiltonicity problem of this graph. For the algorithms, we design an all-port broadcasting algorithm and a single-port neighbourhood broadcasting algorithm for the regular form of the hyper-star graphs. These algorithms are both optimal time-wise. Furthermore, we prove that the folded hyper-star, a variation of the hyper-star, to be maixmally fault-tolerant.
Resumo:
Although there is a consensus in th~ literature on the many uses of the Internet in education, as well as the unique features of the Internet for presenting facts and information, there is no consensus on a standardized method for evaluating Internetbased courseware. Educators rarely have the opportunity to participate in the development of Internet-based courseware, yet they are encouraged to use the technology in their learning environments. This creates a need for summative evaluation methods for Internet-based health courseware. The purpose ofthis study was to assess evaluative measures for Internet-based courseware. Specifically, two entities were evaluated within the study: a) the outcome of the Internet-based courseware, and b) the Internet-based courseware itself. To this end, the Web site www.bodymatters.com was evaluated using two different approaches by two different cohorts. The first approach was a performance appraisal by a group of endusers. A positive, statistically significant change in the students performance was observed due to the intervention ofthe Web site. The second approach was a productoriented evaluation ofthe Web site with the use of a criterion-based checklist and an open-ended comments section. The findings indicate that a summative, criterion-based evaluation is best completed by a multidisciplinary team. The findi~gs also indicated that the two different cohorts reported different product-oriented appraisals of the Web site. The current research confirmed previous research that found that experts returning a poor evaluation of a Web site did not have a relationship to whether or not the end-users performance improved due to the intervention of the Web site.
Resumo:
This study had three purposes related to the effective implem,entation and practice of computer-mediated online distance education (C-MODE) at the elementary level: (a) To identify a preliminary framework of criteria 'or guidelines for effective implementation and practice, (b) to identify areas ofC-MODE for which criteria or guidelines of effectiveness have not yet been developed, and (c) to develop an implementation and practice criteria questionnaire based on a review of the distance education literature, and to use the questionnaire in an exploratory survey of elementary C-MODE practitioners. Using the survey instrument, the beliefs and attitudes of 16 elementary C'- MODE practitioners about what constitutes effective implementation and practice principles were investigated. Respondents, who included both administrators and instructors, provided information about themselves and the program in which they worked. They rated 101 individual criteria statenlents on a 5 point Likert scale with a \. point range that included the values: 1 (Strongly Disagree), 2 (Disagree), 3 (Neutral or Undecided), 4 (Agree), 5 (Strongly Agree). Respondents also provided qualitative data by commenting on the individual statements, or suggesting other statements they considered important. Eighty-two different statements or guidelines related to the successful implementation and practice of computer-mediated online education at the elementary level were endorsed. Response to a small number of statements differed significantly by gender and years of experience. A new area for investigation, namely, the role ofparents, which has received little attention in the online distance education literature, emerged from the findings. The study also identified a number of other areas within an elementary context where additional research is necessary. These included: (a) differences in the factors that determine learning in a distance education setting and traditional settings, (b) elementary students' ability to function in an online setting, (c) the role and workload of instructors, (d) the importance of effective, timely communication with students and parents, and (e) the use of a variety of media.
Resumo:
The current study was an exploration of why some novices are more successful than their peers when learning from the Internet by examining the relations among time spent with relevant information and changes in invested mental effort during Internet navigations as well as achievement. Navigation behaviours and learner characteristics were investigated as predictors of time spent with relevant information and changes in mental effort. Undergraduates (N = 85, Mage = 20 years, 5 months) searched the Internet for information corresponding to a low knowledge topic for 20 min while their eye gaze and pupil size were recorded. Pupil diameter was used as an objective, continuous measure of mental effort. Participants also completed questionnaires or computer tasks pertaining to s e l f-regulated learning characteristics (general intrinsic goal orientation and effort regulation) and cognitive factors (working memory control, distractibility and cognitive style). All analyses controlled for general mental ability, reading comprehension, topic and Internet knowledge, and overall motivation. A greater proportion of time spent with relevant information predicted higher scores on an achievement test. Interestingly, time spent with relevant information partially mediated the positive relation between the frequency of increases in invested mental effort and achievement. Surprisingly, intrinsic goal orientation was negatively related to time spent with relevant information and effort regulation was negatively related to the frequency of increases in invested mental effort. These findings have implications for supports when novices guide their own learning, especially when using the Internet.
Resumo:
Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.
Resumo:
Complex networks have recently attracted a significant amount of research attention due to their ability to model real world phenomena. One important problem often encountered is to limit diffusive processes spread over the network, for example mitigating pandemic disease or computer virus spread. A number of problem formulations have been proposed that aim to solve such problems based on desired network characteristics, such as maintaining the largest network component after node removal. The recently formulated critical node detection problem aims to remove a small subset of vertices from the network such that the residual network has minimum pairwise connectivity. Unfortunately, the problem is NP-hard and also the number of constraints is cubic in number of vertices, making very large scale problems impossible to solve with traditional mathematical programming techniques. Even many approximation algorithm strategies such as dynamic programming, evolutionary algorithms, etc. all are unusable for networks that contain thousands to millions of vertices. A computationally efficient and simple approach is required in such circumstances, but none currently exist. In this thesis, such an algorithm is proposed. The methodology is based on a depth-first search traversal of the network, and a specially designed ranking function that considers information local to each vertex. Due to the variety of network structures, a number of characteristics must be taken into consideration and combined into a single rank that measures the utility of removing each vertex. Since removing a vertex in sequential fashion impacts the network structure, an efficient post-processing algorithm is also proposed to quickly re-rank vertices. Experiments on a range of common complex network models with varying number of vertices are considered, in addition to real world networks. The proposed algorithm, DFSH, is shown to be highly competitive and often outperforms existing strategies such as Google PageRank for minimizing pairwise connectivity.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
The KCube interconnection network was first introduced in 2010 in order to exploit the good characteristics of two well-known interconnection networks, the hypercube and the Kautz graph. KCube links up multiple processors in a communication network with high density for a fixed degree. Since the KCube network is newly proposed, much study is required to demonstrate its potential properties and algorithms that can be designed to solve parallel computation problems. In this thesis we introduce a new methodology to construct the KCube graph. Also, with regard to this new approach, we will prove its Hamiltonicity in the general KC(m; k). Moreover, we will find its connectivity followed by an optimal broadcasting scheme in which a source node containing a message is to communicate it with all other processors. In addition to KCube networks, we have studied a version of the routing problem in the traditional hypercube, investigating this problem: whether there exists a shortest path in a Qn between two nodes 0n and 1n, when the network is experiencing failed components. We first conditionally discuss this problem when there is a constraint on the number of faulty nodes, and subsequently introduce an algorithm to tackle the problem without restrictions on the number of nodes.