4 resultados para International Association of Bridge, Structural and Ornamental Iron Workers

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In animals, both stress resistance and longevity appear to be influenced by the insulin/insulin-like growth factor-l signaling (lIS) pathway, the basic organization of which is highly conserved from invertebrates to vertebrates. Reduced lIS or genetic disruption of the lIS pathway leads to the activation of forkhead box transcription factors, which is thought to upregulate the expression of genes involved in enhancing stress resistance, including perhaps key antioxidant enzymes as well as DNA repair enzymes. Enhanced antioxidant and DNA repair capacities may underlie the enhanced cellular stress resistance observed in long-lived animals, however little data is available that directly supports this idea. I used three. experimental approaches to test the association of intracellular antioxidant and DNA base excision repair (BER) capacities with stress resistance and longevity: (1) a comparison of multiple vertebrate endotherm species of varying body masses and longevities; (2) a comparison of long-lived Snell dwarf mice and their normallittermates; and (3) a comparison of hypometabolic animals undergoing hibernation or estivation with their active counterparts. The activities of the five major intracellular antioxidant enzymes as well as the two rate-limiting enzymes in the BER pathway, apurininc/apyrimidinic (AP) endonuclease and polymerase ~, were measured. These measurements were performed in one or more of the following: (1) cultured dermal fibroblasts; (2) brain tissue; (3) heart tissue; (4) liver tissue. My results indicate that antioxidant enzymes are not universally upregulated in association with enhanced stress resistance and longevity. I also did not find that BER enzyme activity was positively correlated with longevity, in an inter-species context, though there was evidence for enhanced BER in long-lived Snell dwarf mice. Thus, while there were instances in which enhanced antioxidant and BER enzyme activities were associated with increased stress resistance and/or longevity, this was not universally the case, indicating that other mechanisms must be involved. These results suggest the need to re-examine existing 'oxidative stress' hypotheses of longevity and probe further into the molecular physiology of longevity to discover its mechanistic basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the association between sleep disorders, obesity status, and the risk of diabetes in adults, a total of 3668 individuals aged 40+ years fromtheNHANES 2009-2010 withoutmissing information on sleep-related questions,measurements related to diabetes, and BMI were included in this analysis. Subjects were categorized into three sleep groups based on two sleep questions: (a) no sleep problems; (b) sleep disturbance; and (c) sleep disorder. Diabetes was defined as having one of a diagnosis from a physician; an overnight fasting glucose > 125 mg/dL; Glycohemoglobin > 6.4%; or an oral glucose tolerance test > 199mg/dL. Overall, 19% of subjects were diabetics, 37% were obese, and 32% had either sleep disturbance or sleep disorder. Using multiple logistic regression models adjusting for covariates without including BMI, the odds ratios (OR, (95% CI)) of diabetes were 1.40 (1.06, 1.84) and 2.04 (1.40, 2.95) for those with sleep disturbance and with sleep disorder, respectively. When further adjusting for BMI, the ORs were similar for those with sleep disturbance 1.36 (1.06, 1.73) but greatly attenuated for those with sleep disorders (1.38 [0.95, 2.00]). In conclusion, the impact of sleep disorders on diabetes may be explained through the individuals’ obesity status.