5 resultados para Intermodal terminals.
em Brock University, Canada
Resumo:
Adult rats emit 22 kHz ultrasonic alann calls in aversive situations. This type of call
IS a component of defensive behaviour and it functions predominantly to warn
conspecifics about predators. Production of these calls is dependent on the central
cholinergic system. The laterodorsal tegmental nucleus (LDT) and pedunculopontine
tegmental nucleus (PPT) contain largely cholinergic neurons, which create a continuous
column in the brainstem. The LDT projects to structures in the forebrain, and it has been
implicated in the initiation of 22 kHz alarm calls. It was hypothesized that release of
acetylcholine from the ascending LDT terminals in mesencephalic and diencephalic areas
initiates 22 kHz alarm vocalization. Therefore, the tegmental cholinergic neurons should
be more active during emission of alarm calls. The aim of this study was to demonstrate
increased activity of LDT cholinergic neurons during emission of 22 kHz calls induced
by air puff stimuli. Immunohistochemical staining of the enzyme choline
acetyltransferase identified cell bodies of cholinergic neurons, and c-Fos immunolabeling
identified active cells. Double labeled cells were regarded as active cholinergic cells.
There were significantly more (p
Resumo:
Increasing the impulse activity of neurons in vivo over 3 or more days causes a reduction in transmitter release that persists for days or weeks (eg. Mercier and Atwood, 1989). This effect is usually accompanied by decreased synaptic fatigue. These two changes involve presynaptic mechanisms and indicate "long-term adaptation" (LTA) of nerve terminals. Previous experiments have shown that LTA requires extracellular calcium and protein synthesis (eg. Hong and Lnenicka, Soc. Neurosci. Abstr. 17:1322) and appears to involve communication between the cell body and the nerve terminals. The present study examines the possibility that the reduction in transmitter release is caused by an -increase in the calcium buffering ability within the nerve terminals. It examines the responses of adapted and control nerve terminals to exogenously applied calcium buffer, BAPTA-AM, which decreases transmitter release (Robitialle and Charlton, 1992). If LTA increases intrinsic Ca2+-buffering, the membrane permeant form of BAPTA should have less effect on adapted nerve terminals than on controls. Experiments are performed on the phasic abdominal extensor motor neurons of the crayfish, Procambarns clarkii. BAPTA-AM decreases excitatory postsynaptic potentials (EPSP's) of the phasic extensor muscles in a dosedependent manner between 5 and 50 JLM. LTA is elicited by in vivo stimulation at 2.5 Hz for 2-4 h per day over 3 days, which reduces EPSP's by over 50%. Experiments indicate that BAPTA-AM produces no significant change in EPSP reduction in adapted neurons when compared to controls. These results do not support the hypothesis that increased daily activity alters rapid intrinsic calcium buffers, that are able to reduce transmitter output in the same manner as BAPTA.
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 B56 M68 2007
Resumo:
The cholesterol chelating agent, methyl-b-cyclodextrin (MbCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MbCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MbCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MbCD impaired impulse propagation and decreased EJP amplitude by 40% (P,0.05) in preparations from crayfish acclimatized to 14uC but not from those acclimatized to 21uC. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P,0.05). MbCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and coldacclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P,0.05; 50% reduction in warm, P,0.05). MbCD reduced cholesterol in isolated nerve and muscle from cold- and warmacclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P,0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MbCD on glutamatesensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MbCD can affect both presynaptic and postsynaptic properties, and that some effects of MbCD are unrelated to cholesterol chelation.
Resumo:
The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.