3 resultados para Interaction human robot
em Brock University, Canada
Resumo:
The human a-tocopherol transfer protein (h-a-TTP) is understood to be the entity responsible for the specific retention of a-tocopherol (a-toc) in human tissues over all other forms of vitamin E obtained from the diet. a-Tocopherol is the most biologically active form of vitamin E, and to date has been studied extensively with regard to its antioxidant properties and its role of terminating membrane lipid peroxidation chain reactions. However, information surrounding the distribution of a-tocopherol, specifically its delivery to intracellular membranes by a-TTP, is still unclear and the molecular factors influencing transfer remain elusive. To investigate the mechanism of ligand transfer by the h-a-TTP, a fluorescent analogue of a-toc has been used in the development of a fluorescence resonance energy transfer (FRET) assay. (/?)-2,5,7,8-tetramethyl-2-[9-(7-nitro-benzo[l,2,5]oxdiazol-4-ylamino)-nonyl]- chroman-6-ol (NBD-toc) has allowed for the development of the FRET-based ligand transfer assay. This ligand has been utilized in a series of experiments where changes were made to acceptor lipid membrane concentration and composition, as well as to the ionic strength and viscosity of the buffer medium. Such changes have yielded evidence supporting a collisional mechanism of ligand transfer by a-TTP, and have brought to light a new line of inquiry pertaining to the nature of the forces governing the collisional transfer interaction. Through elucidation of the transfer mechanism type, a deeper understanding of the transfer event and the in vivo fate of a-tocopherol have been obtained. Furthermore, the results presented here allow for a deeper investigation of the forces controlling the collisional protein-membrane interaction and their effect on the transfer of a-toc to membranes. Future investigation in this direction will raise the possibility of a complete understanding of the molecular events surrounding the distribution of a-toc within the cell and to the body's tissues.
Resumo:
Infection of hUlnan cells by bovine adenovirlls type 2 (BAV2) is abortive. To obtain a better understanding of this pllenomel1011, and in particular to identify Wllich steps in the viral replicative cycles are altered dllring this virlls-host cells interaction, we have llndertaken a detailed study of BAV2 infections of the nonpennissive hUlnan IIeLa cells. Using autoradiography and 3H-thymidine-labeled vvhole virus particles for infection of HeLa cells, vve determined that viral attachluent appears normal. Furthermore, Southern analysis revealed that internalization and transport to the nuclells occurs in BAV2 infected HeLa cells. To investigate viral DNi\ synthesis, infectivity assays involving hydroxyllrea, a viral DN-A synthesis inhibitor, were carried out. The results revealed that Bft:LV2 DNA synthesis does not occur in HeLa cells. Fllrtller investigations into viral early gene expression by northern blotting analyses indicated that HeLa cells fail to support expression of EIA. This suggested that abortive infection by BAV2 could be attributed to faiiure of EIA to express. To test the possibility that the failure to express ElA was due to the inability of the host cell to recognize the E lA prOlTIoter, ,ve carried out transient expression transfection experiments using plaslnids \vith the bacterial lacZ linder the control of either BAV2 or i\d5 EIA promoter. X-gal histochelIlical assays sho\ved expression of lacZ from the Ad5 ElA prOlnoter but no expression of lacZ [rOln the BAV2 EIA prOlTIoter. This further suggests that the abortive infection b:y BAV2 could be attributed to failure of EIA to express dlle to a nonfllnctional prOlTIoter in hlunan cells. Thus we speClllated that abortive infection of HeLa cells by adenoviruses may be averted by providing EtA functions in trans. To demonstrate this, we coinfected HeLa cells with Ad5 and BAV2, reasoning that Ad5 could cOlnpensate for EIA deficiency in BAV2. OUf results showed that BAV2 DNA synthesis was indeed Sllpported in HeLa cells coinfected with Ad5dlE3 as revealed by Southern analysis. In contrast, coinfection of HeLa cells \vith BAV2 and Ad5dlElE3 mutallt did not support BLt\V2 DNA synthesis. Interestingly, BAV2 failed to replicate in 293 cells which are constitlltively expressing the El genes. This could ilnply that El is necessary but not sufficient to avert the failllre ofBAV2 to undergo productive infection ofhulnan cells.
Resumo:
Resveratrol, a polyphenol found naturally in red wines, has attracted great interest in both the scientific community and the general public for its reported ability to protect against many of the diseases facing Western society today. While the purported health effects of resveratrol are well characterized, details of the cellular mechanisms that give rise to these observations are unclear. Here, the mitochondrial antioxidant enzyme Mn superoxide dismutase (MnSOD) was identified as a proximal target of resveratrol in vitro and in vivo. MnSOD protein and activity levels increase significantly in cultured cells treated with resveratrol, and in the brain tissue of mice given resveratrol in a high fat diet. Preventing the increase in MnSOD levels eliminates two of resveratrol’s more interesting effects in the context of human health: inhibition of proliferative cell growth and cytoprotection. Thus, the induction of MnSOD is a critical step in the molecular mechanism of resveratrol. Mitochondrial morphology is a malleable property that is capable of impeding cell cycle progression and conferring resistance against stress induced cell death. Using confocal microscopy and a novel ‘cell free’ fusion assay it was determined that concurrent with changes in MnSOD protein levels, resveratrol treatment leads to a more fused mitochondrial reticulum. This observation may be important to resveratrol’s ability to slow proliferative cell growth and confer cytoprotection. Resveratrol's biological activities, including the ability to increase MnSOD levels, are strikingly similar to what is observed with estrogen treatment. Resveratrol fails to increase MnSOD levels, slow proliferative cell growth and confer cytoprotection in the presence of an estrogen receptor antagonist. Resveratrol's effects can be replicated with the specific estrogen receptor beta agonist diarylpropionitrile, and are absent in myoblasts lacking estrogen receptor beta. Four compounds that are structurally similar to resveratrol and seven phytoestrogens predicted to bind to estrogen receptor beta were screened for their effects on MnSOD, proliferative growth rates and stress resistance in cultured mammalian cells. Several of these compounds were able to mimic the effects of resveratrol on MnSOD levels, proliferative cell growth and stress resistance in vitro. Thus, I hypothesize that resveratrol interacts with estrogen receptor beta to induce the upregulation of MnSOD, which in turn affects cell cycle progression and stress resistance. These results have important implications for the understanding of RES’s biological activities and potential applications to human health.