8 resultados para Induced Systemic Resistance
em Brock University, Canada
Resumo:
Excess plasma free fatty acids (FFA) are correlated with insulin resistance and are a risk factor for the development of type 2 diabetes. In this study we examined the effect of the polyphenol resveratrol on FF A-induced insulin resistance in skeletal muscle cells and the mechanisms involved. Incubation of L6 myotubes with the FF A palmitate significantly decreased the insulin-stimulated glucqse uptake. Importantly, the effect of palmitate was ameliorated by resveratrol. Palmitate significantly increased serine phosphorylation of IRS..; 1 and reduced insulin-stimulated Akt phosphorylation, an effect that was abolished by resveratrol. We then investigated the effect of palmitate and resveratrol on the expression and phosphorylation of JNK, mTOR, p70-S6K, and AMPK kinases. The results demonstrated that our treatments had no effect on the expression of these proteins. However, palmitate increased the phosphorylation of mTOR and p70- S6K, whereas resveratrol abolished this effect and increased the phosphorylation of AMPK. Furthermore, all effects of resveratrol were abolished with sirtuin inhibitors, sirtinol and nicotinamide. These results indicate that resveratrol ameliorated FF A-induced insulin resistance by regulating mTOR and p70-S6K phosphorylation in skeletal muscle cells, through a mechanism involving sirtuins.
Resumo:
Arabidopsis thaliana is an established model plant system for studying plantpathogen interactions. The knowledge garnered from examining the mechanism of induced disease resistance in this model system can be applied to eliminate the cost and danger associated with current means of crop protection. A specific defense pathway, known as systemic acquired resistance (SAR), involves whole plant protection from a wide variety of bacterial, viral and fungal pathogens and remains induced weeks to months after being triggered. The ability of Arabidopsis to mount SAR depends on the accumulation of salicylic acid (SA), the NPRI (non-expressor of pathogenesis related gene 1) protein and the expression of a subset of pathogenesis related (PR) genes. NPRI exerts its effect in this pathway through interaction with a closely related class of bZIP transcription factors known as TGA factors, which are named for their recognition of the cognate DNA motif TGACG. We have discovered that one of these transcription factors, TGA2, behaves as a repressor in unchallenged Arabidopsis and acts to repress NPRI-dependent activation of PRJ. TGA1, which bears moderate sequence similarity to TGA2, acts as a transcriptional activator in unchallenged Arabidopsis, however the significance of this activity is J unclear. Once SAR has been induced, TGAI and TGA2 interact with NPRI to form complexes that are capable of activating transcription. Curiously, although TGAI is capable of transactivating, the ability of the TGAI-NPRI complex to activate transcription results from a novel transactivation domain in NPRI. This transactivation domain, which depends on the oxidation of cysteines 521 and 529, is also responsible for the transactivation ability of the TGA2-NPRI complex. Although the exact mechanism preventing TGA2-NPRI interaction in unchallenged Arabidopsis is unclear, the regulation of TGAI-NPRI interaction is based on the redox status of cysteines 260 and 266 in TGAl. We determined that a glutaredoxin, which is an enzyme capable of regulating a protein's redox status, interacts with the reduced form of TGAI and this interaction results .in the glutathionylation of TGAI and a loss of interaction with NPRl. Taken together, these results expand our understanding of how TGA transcription factors and NPRI behave to regulate events and gene expression during SAR. Furthermore, the regulation of the behavior of both TGAI and NPRI by their redox status and the involvement of a glutaredoxin in modulating TGAI-NPRI interaction suggests the redox regulation of proteins is a general mechanism implemented in SAR.
Resumo:
Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.
Resumo:
Systemic Acquired Resistance (SAR) is a type of plant systemic resistance occurring against a broad spectrum of pathogens. It can be activated in response to pathogen infection in the model plant Arabidopsis thaliana and many agriculturally important crops. Upon SAR activation, the infected plant undergoes transcriptional reprogramming, marked by the induction of a battery of defense genes, including Pathogenesis-related (PR) genes. Activation of the PR-1 gene serves as a molecular marker for the deployment of SAR. The accumulation of a defense hormone, salicylic acid (SA) is crucial for the infected plant to mount SAR. Increased cellular levels of SA lead to the downstream activation of the PR-1 gene, triggered by the combined action of the Non-expressor of Pathogenesis-related Gene 1 (NPR1) protein and the TGA II-clade transcription factor (namely TGA2). Despite the importance of SA, its receptor has remained elusive for decades. In this study, we demonstrated that in Arabidopsis the NPR1 protein is a receptor for SA. SA physically binds to the C-terminal transactivation domain of NPR1. The two cysteines (Cys521 and Cys529), which are important for NPR1’s coactivator function, within this transactivation domain are critical for the binding of SA to NPR1. The interaction between SA and NPR1 requires a transition metal, copper, as a cofactor. Our results also suggested a conformational change in NPR1 upon SA binding, releasing the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. These results advance our understanding of the plant immune function, specifically related to the molecular mechanisms underlying SAR. The discovery of NPR1 as a SA receptor enables future chemical screening for small molecules that activate plant immune responses through their interaction with NPR1 or NPR1-like proteins in commercially important plants. This will help in identifying the next generation of non-biocidal pesticides.
Resumo:
During infection, the model plant Arabidopsis thaliana is capable of activating long lasting defence responses both in tissue directly affected by the pathogen and in more distal tissue. Systemic acquired resistance (SAR) is a type of systemic defence response deployed against biotrophic pathogens resulting in altered plant gene expression and production of antimicrobial compounds. One such gene involved in plant defence is called pathogenesis-related 1 (PR1) and is under the control of several protein regulators. TGA II-clade transcription factors (namely TGA2) repress PR1 activity prior to infection by forming large oligomeric complexes effectively blocking gene transcription. After pathogen detection, these complexes are dispersed by a mechanism unknown until now and free TGA molecules interact with the non-expressor of pathogenesis-related gene 1 (NPR1) protein forming an activating complex enabling PR1 transcription. This study elucidates the TGA2 dissociation mechanism by introducing protein kinase CK2 into this process. This enzyme efficiently phosphorylates TGA2 resulting in two crucial events. Firstly, the DNA-binding ability of this transcription factor is completely abolished explaining how the large TGA2 complexes are quickly evicted from the PR1 promoter. Secondly, a portion of TGA2 molecules dissociate from the complexes after phosphorylation which likely makes them available for the formation of the TGA2-NPR1 activating complex. We also show that phosphorylation of a multiserine motif found within TGA2’s N terminus is responsible for the change of affinity to DNA, while modification of a single threonine in the leucine zipper domain seems to be responsible for deoligomerization. Despite the substantial changes caused by phosphorylation, TGA2 is still capable of interacting with NPR1 and these proteins together form a complex on DNA promoting PR1 transcription. Therefore, we propose a change in the current model of how PR1 is regulated by adding CK2 which targets TGA2 displacing it’s complexes from the promoter and providing solitary TGA2 molecules for assembly of the activating complex. Amino acid sequences of regions targeted by CK2 in Arabidopsis TGA2 are similar to those found in TGA2 homologs in rice and tobacco. Therefore, the molecular mechanism that we have identified may be conserved among various plants, including important crop species, adding to the significance of our findings.
Resumo:
Glutaredoxins are oxidoreductases capable of reducing protein disulfide bridges and glutathione mixed disulfides through the process of deglutathionylation and glutathionylation. Lately, redox-mediated modifications of functional cysteine residues of TGA1 and TGA8 transcription factors have been postulated. Namely, GRX480 and ROXY1 glutaredoxins have been previously shown to interact with TGA proteins and have been suggested to regulate redox state of these proteins. TGA1, together with TGA2, is involved in systemic acquired resistance (SAR) establishment in the plant Arabidopsis thaliana through PR1 (Pathogenesis related 1) gene activation. They both form an enhanceosome complex with the NPR1 protein (non-expressor of pathogenesis related gene 1) which leads to PR1 transcription. Although TGA1 is capable of activating PR1 transcription, the ability of the TGA1 NPR1 enhanceosome complex to assembly is based on the redox status of TGA1. We identified GRX480 as a glutathionylating enzyme that catalyzes the TGA1 glutathione disulfide transferase reaction with a Km of around 20μM GSSG (oxidized glutathione). Out of four cysteine residues found within TGA1, C172 and C266 were found to be glutathionylated by this enzyme. We also confirmed TGA1 glutathionylation in vivo and showed that this modification takes place while TGA1 is associated with the PR1 promoter enzymatically via GRX480. Furthermore, we show that glutathionylation via GRX480 abolishes TGA1's interaction with NPR1 and consequently prevents the TGA1-NPR1 transcription activation of PR1. When glutathionylated, TGA1 is recruited to the PR1 promoter and acts as a repressor. Therefore, glutathionylation is a mechanism that prevents TGA1 NPR1 interaction, allowing TGA1 to function as a repressor of PR1 transcription. Surprisingly, GRX480 was not able to deglutathionylate proteins demonstrating the irreversible nature of the reaction. Moreover, we demonstrate that other members of CC-class glutaredoxins, namely ROXY1 and ROXY2, can also catalyze protein glutathionylation. The TGA8 protein was previously shown to interact with NPR1 analogs, BOP1 and BOP2 proteins. However, unlike the case of TGA1 NPR1 interaction, here we demonstrate that TGA8-BOP1 interaction is not redox regulated and that TGA8 glutathionylation by ROXY1 and ROXY2 enzymes does not abolish this interaction in vitro. However, TGA8 glutathionylation results in TGA8 oligomer disassembly into smaller complexes and monomers. Our results suggest that CC-Grxs are unable to reduce mixed disulfides, instead they efficiently catalyze the opposite reaction which distinguishes them from traditional glutaredoxins. Therefore, they should not be classified as glutaredoxins but as protein glutathione disulfide transferases.
Resumo:
There is extensive evidence that the mesolimbic dopamine system underlies the production of 50 kHz ultrasonic vocalizations in rats. In particular, the shell of the nucleus accumbens is associated with generation of frequency modulated 50 kHz calls (a specific type of 50 kHz call which can be subdivided into various subtypes). There is also evidence that amphetamine administered systemically preferentially increases the proportion of trill and step calls compared to other frequency modulated 50 kHz subtypes. The purpose of this study was to investigate the effect of drug administration route and the role of the nucleus accumbens shell in amphetamine-induced 50 kHz call profile in the rat. Three experiments investigated this by using subcutaneous and intra-accumbens microinjections of amphetamine, as well as procaine (a local anesthetic) blockade of the nucleus accumbens. Ultrasonic vocalizations were recorded digitally from 24 rats and were analysed for sonographic structure based on general call parameters. The results of the three experiments were partially supportive of the hypotheses. Systemic amphetamine was found to induce greater bandwidth in 50 kHz calling compared to spontaneous calls in a vehicle condition. Systemic amphetamine was also found to preferentially increase the proportion of trill and step subtypes compared to vehicle. Moreover, there was no difference in the proportions of 50 kHz subtypes resulting from intracerebral or systemic application of amphetamine. There was, however, a significant difference for bandwidth, with systemic amphetamine inducing greater bandwidth over intraaccumbens application. Procaine blockade of the nucleus accumbens shell paired with subcutaneous amphetamine produced no difference in bandwidth of calls compared with those after a vehicle pre-treatment similarly paired. There was no reduction in the proportions of trill and step 50 kHz subtypes as well, with the procaine condition showing significantly greater proportion of step calls. The results of the study support a role for the iii nucleus accumbens shell in the amphetamine-induced changes on 50 kHz call profile. They also indicate there are more regions and pathways involved in generating 50 kHz calls than the projections from the ventral tegmental area to the nucleus accumbens. The implications of this work are that frequency modulated 50 kHz subtypes may be generated by distinct neurophysiological mechanisms and may represent a profitable avenue for investigating different circuits of 50 kHz call categories in the rat.
Resumo:
The purpose of this study was to examine the acute hormonal responses to a bout of resistance versus plyometric exercise in young male athletes. Specifically, changes in salivary cortisol, testosterone and testosterone-to-cortisol ratio from pre- to post-exercise between the two different exercise protocols were examined. Twenty-six peri-pubertal active boys participated in this cross-over study, completing two exercise sessions. During each session, participants first completed a 30 min control period, which did not include any exercise, and then was randomly assigned to perform a 45 min of either a resistance exercise or a plyometric exercise protocol. All participants crossed over to perform the other exercise protocol during their second exercise session, a week later. Four saliva samples during each protocol were taken at: baseline, pre-exercise, 5 min post-exercise and 30 min post-exercise. Significant increases in testosterone values were reported 5 min post-exercise following the resistance protocol, but not the plyometric protocol. Both exercise protocols resulted in significant cortisol decreases overtime, as well as significant testosterone-to-cortisol ratio increases. The post-exercise increases in salivary testosterone and testosterone-to-cortisol ratio followed the typical exercise induced anabolic response seen in adults. However, the post-exercise decrease in salivary cortisol was different than the typical adult response indicating an insufficient stimulus for this age group maybe due to their stage of the biological development. Thus, in the adolescent boys, exercise appears to change the anabolic to catabolic balance in favor of anabolism.