6 resultados para In-plane bending moment
em Brock University, Canada
Resumo:
This thesis takes seriously the proposition that existentialism is a lived philosophy. While Descartes' proof for the existence of God initially sparked my interest in philosophy, the insights of existentialism have allowed me to appropriate philosophy as a way of life. I apply the insights of Kierkegaard's writings to my spiritual and philosophy development. Philosophy is personal, and Kierkegaard's writings deal with the development of the person in his aesthetic, ethical and religious dimensions. Philosophy is a struggle, and this thesis, reveals the existential struggle of the individual in despair. The thesis argues that authentic faith actually entails faith. The existential believer has this faith whereas the religious believer does not. The subjectively reflective existential believer recognizes that a leap of faith is needed; anything else, is just historical, speculative knowledge. The existential believer or, the Knight of Faith, realizes that a leap of faith is needed to become open in inwardness to receive the condition to understand the paradoxes that faith presents. I will present Kierkegaard's "Analogy of a House" which is in essence, the backbone of his philosophy. I will discuss the challenge of moving from one floor to the next. More specifically, I will discuss the anxiety that is felt in the very moment of the transition from the first floor to the second floor. I will outline eight paradoxes that must me resolved in order for the individual to continue on his journey to the top floor of the house. I will argue that Kierkegaard's example of Abraham as a Knight of Faith is incorrect, that Abraham was in fact not a Knight of Faith. I will also argue that we should find our own exemplars in our own lives by looking for Knight of Faith traits in people we know and then trying to emulate those people. I will also discuss Unamuno's "paradoxical faith" and argue that this kind of faith is a strong alternative to those who find that Kierkegaard's existential faith is not a possibility.
Resumo:
Western law schools are suffering from an identity and moral crisis. Many of the legal profession's problems can be traced to the law school environment, where students are taught to reason and practice in ways that are often at odds with their own personalities and values and even with generally accepted psychologically healthy practices. The idealism, ethic of care, and personal moral compasses of many students become eroded and even lost in the present legal education system. Formalism, rationalism, elitism, and big business values have become paramount. In such a moment of historical crisis, there exists the opportunity to create a new legal education story. This paper is a conceptual study of both my own Canadian legal education and the general legal education experience. It examines core problems and critiques of the existing Western legal education organizational and pedagogical paradigm to which Canadian law schools adhere. New approaches with the potential to enrich, humanize, and heal the Canadian law school experience are explored. Ultimately, the paper proposes a legal education system that is more interdisciplinary, theoretically and practically integrated, emotionally intelligent, technologically connected, morally accountable, spiritual, and humane. Specific pedagogical and curricular strategies are suggested, and recommendations for the future are offered. The dehumanizing aspects of the law school experience in Canada have rarely been studied. It is hoped that this thesis will fill a gap in the research and provide some insight into an issue that is of both academic and public importance, since the well-being of law students and lawyers affects the interests of their clients, the general public, and the integrity and future of the entire legal system.
Resumo:
TITLE: The normal co-ordinate analysis, vibrational spectra and theoretical infrared intensities of some thiocarbonyl halides. AUTHOR: J. L. Brema SUPERVISOR: Dr. D. C. Moule NUMBER OF PAGES: 89 ABSTRACT: The vibrational assignment of the five-in-plane fundamental modes of CSClBr has been made on the basis of infrared gas phase and liquid Raman spectral analyses to supplement our earlier vibrational studies. Even though the one out-of-plane fundamental was not observed spectroscopically an attempt has been made to predict its frequency. The vibrational spectra contained impurity bands and the CSClBr assignment was made only after a thorough analysis of the impurities themselves. A normal co-ordinate analysis calculation was performed assuming a Urey-Bradley force field. This calculation yielded the fundamental frequencies in good agreement with those observed after refinement of the originally transferred force constants. The theoretical frequencies are the eigenvalues of the secular equation and the calculation also gave the corresponding eigenvectors in the form of the very important LLj matrix. The [l] matrix is the transfoirmation between internal co-ordinates and normal co-ordinates and it is essential for Franck-Condon calculations on electronically excited molecules and for infrared Integrated band intensity studies. Using a self-consistent molecular orbital calculation termed "complete neglect of differential overlap" (CNDO/2) , theoretical values of equilibrium bond lengths and angleswere calcuted for a series of carbonyl and thlocarbonyl molecules. From these calculations valence force field force constants were also determined but with limited success. With the CNIX)/2 method theoretical dipole moment derivatives with respect to symmetrized internal co-ordinates were calculated and the results should be useful in a correlation with experimentally determined values.
Resumo:
In this work, the magnetic field penetration depth for high-Tc cuprate superconductors is calculated using a recent Interlayer Pair Tunneling (ILPT) model proposed by Chakravarty, Sudb0, Anderson, and Strong [1] to explain high temperature superconductivity. This model involves a "hopping" of Cooper pairs between layers of the unit cell which acts to amplify the pairing mechanism within the planes themselves. Recent work has shown that this model can account reasonably well for the isotope effect and the dependence of Tc on nonmagnetic in-plane impurities [2] , as well as the Knight shift curves [3] and the presence of a magnetic peak in the neutron scattering intensity [4]. In the latter case, Yin et al. emphasize that the pair tunneling must be the dominant pairing mechanism in the high-Tc cuprates in order to capture the features found in experiments. The goal of this work is to determine whether or not the ILPT model can account for the experimental observations of the magnetic field penetration depth in YBa2Cu307_a7. Calculations are performed in the weak and strong coupling limits, and the efi"ects of both small and large strengths of interlayer pair tunneling are investigated. Furthermore, as a follow up to the penetration depth calculations, both the neutron scattering intensity and the Knight shift are calculated within the ILPT formalism. The aim is to determine if the ILPT model can yield results consistent with experiments performed for these properties. The results for all three thermodynamic properties considered are not consistent with the notion that the interlayer pair tunneling must be the dominate pairing mechanism in these high-Tc cuprate superconductors. Instead, it is found that reasonable agreement with experiments is obtained for small strengths of pair tunneling, and that large pair tunneling yields results which do not resemble those of the experiments.
Resumo:
Impurity free eluission spectra of HCCCHO and DCCCHO have been rephotographed using the electronic-energy-exchange method with benzene as a carrier gas. The near ultraviolet spectra of ReeCHO and DCCCHO were photographed in a sorption under conditions of high resolution with absorption path lengths up to 100 meters. The emission and absorption spectra of Propynal resulting from 3 n 1 t 1\ - A excitation has been reanalyzed in som.e detail. Botrl of the eH out-of-plane wagging modes were found to have negative anharmonicity. A barrier height of 56.8/0.0 cm- 1 and a nonplanar oft , , equilibrium angle of 17 3 /30 are calculated for the V 10/ lJ 11 modes. The in-plane and out-of-plane v1. brational modes in the 3A." and 1a~. ' elec ronic states of Propynal were subjected to a normal coordinate treatment in the approximat :on of tIle Urey-Bradley force field. From the relative oscillator strengths of the trans1·t1·0ns connect i ng t he v ibrat1•0n1ess lA' , state and t,he V1· bron1·C 3· if levels of the A state, the differences in equilibrium configuration were evaluated from an approximate Franck-Condon analysis based on the ground state normal coordinates. As this treatment gave 512 possible geometrical structures for the upper state, it 4 was necessary to resort to a comparison of the observed and calculated moments of inertia along with chemical intuition to isolate the structure. A test of the correctness of the calculated structure change and the vibrational assignment was raade by evaluating the intensities of the inplane and out-oi-plane fundarnental, sequence, and cross sequellce transitions y the exact Franck-Condon method.
Resumo:
The infrared and the Raman spectra of eSelF has been obtained for the first time and has been analysed to give the in-plane normal vibrational frequencies of the molecule, in the ground state. A normal co-ordinate analysis has been carried out for the molecules CSF2, CSClF and eSel 2 using a Urey-Bradley type of potential function and the elements of the [L] matrix elements, the distribution of the potential energy in Urey-Bradley space, and the displacement vector diagrams for the normal modes of vibration for these molecules, have been obtained. The bond for~e constants obtained through the normal co-ordinate analysis, have given some interesting results. The stretching force constant, Kes ' varies markedly with halogen substitution and the force constants KeF and Keel also vary with substitution.