1 resultado para Impure sets
em Brock University, Canada
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (7)
- Aberystwyth University Repository - Reino Unido (6)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (14)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (42)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (19)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (32)
- CentAUR: Central Archive University of Reading - UK (25)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (9)
- Cochin University of Science & Technology (CUSAT), India (6)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- eScholarship Repository - University of California (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (20)
- Institute of Public Health in Ireland, Ireland (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Leiria (3)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (20)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (45)
- Queensland University of Technology - ePrints Archive (334)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (39)
- School of Medicine, Washington University, United States (2)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (15)
- Universidade Complutense de Madrid (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (129)
- University of Queensland eSpace - Australia (27)
- University of Washington (2)
Resumo:
Rough Set Data Analysis (RSDA) is a non-invasive data analysis approach that solely relies on the data to find patterns and decision rules. Despite its noninvasive approach and ability to generate human readable rules, classical RSDA has not been successfully used in commercial data mining and rule generating engines. The reason is its scalability. Classical RSDA slows down a great deal with the larger data sets and takes much longer times to generate the rules. This research is aimed to address the issue of scalability in rough sets by improving the performance of the attribute reduction step of the classical RSDA - which is the root cause of its slow performance. We propose to move the entire attribute reduction process into the database. We defined a new schema to store the initial data set. We then defined SOL queries on this new schema to find the attribute reducts correctly and faster than the traditional RSDA approach. We tested our technique on two typical data sets and compared our results with the traditional RSDA approach for attribute reduction. In the end we also highlighted some of the issues with our proposed approach which could lead to future research.