2 resultados para Illinois. Ambient Air Monitoring Section

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inverse relationship between arboreal lichen species richness and sulphur dioxide in ambient air has been thoroughly documented in the literature. Previous work in southern Ontario has shown that lichen bioindication can identify areas of potential concern regarding air quality. The EMAN suite of l i chens was applied in the City of Samia by surveying 458 Sugar Maple trees, in order to test the applicability of lichen bioindication under conditions of high mean S02 levels and high species richness values. The results of the survey were explored using Geographic Information Systems. A spatial relationship between lichen community variables, the Bluewater Bridge and the highway was identified. Lichen species richness, lichen percent cover and Index of Atmospheric Purity values were higher along the bridge and highway. No strong gradients were found between other known pollution sources and no lichen deserts were identified. The most common community grouping consisted of Physcia millegrana Degel, Candelaria concolor (Dicks) B. Stein, Physcia aipolia (Ehrh ex Humb.) Furnrohr; all of which are known nitrophytes. The relationship between substrate pH and lichen species richness was examined. Sites with a known source of anthropogenic chemical contamination were found to have a correlation of l=0.8 between lichen species richness and pH. The inverse was found for sites with no known source of contamination with a correlation of r 2 =-0.72. The findings suggest that species richness may be influenced by altering substrate pH which promotes the growth of nitrophytic species capable of tolerating high S02 levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ambient (03) ozone concentrations were compared to ozone damage on milkweed plants to determine if there was a correlation. Eight survey sites of at least 100 plants each were located within 5 kilometers of Air Quality Index (AQI) stations in southern Ontario. Sites were visited nine times from June-September (2007) and milkweed leaves from 75 plants were assessed using methods pioneered in the United States. Ambient 0 3 results were calculated into SUM65, seasonal cumulative 0 3, and total 03. The 0 3 exposure indices SUM65 and cumulative 0 3 were tested statistically to determine which index is biologically relevant to milkweed as an 0 3 damage indicator species. The milkweed damage indices were incidence of leaves damaged per plant, incidence of plants damaged per site, and total 0 3• The incidence of plants injured per site was the best damage parameter with an F(1,28)=17.37, p=0.0003 for SUM65 and F(1,28)=7.5, p=O.0106 for cumulative 03 .. Milkweed plants showed quantifiable ozone damage with minimal spatial differences in damage and thus have potential use as a biomonitor species in southern Ontario.