5 resultados para Ifn-gamma
em Brock University, Canada
Resumo:
The oscillation of neuronal circuits reflected in the EEG gamma frequency may be fundamental to the perceptual process referred to as binding (the integration of various thoughts and perceptions into a coherent picture). The aim of our study was to expand our knowledge of the developmental course ofEEG gamma in the auditory modality. 2 We investigated EEG 40 Hz gamma band responses (35.2 to 43.0 Hz) using an auditory novelty oddball paradigm alone and with a visual-number-series distracter task in 208 participants as a function of age (7 years to adult) at 9 sites across the sagital and lateral axes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4). Gamma responses were operationally defined as change in power or a change in phase synchrony level from baseline within two time windows. The evoked gamma response was defined as a significant change from baseline occurring between 0 to 150 ms after stimulus onset; the induced gamma response was measured from 250 to 750 ms after stimulus onset. A significant evoked gamma band response was found when measuring changes in both power and phase synchrony. The increase in both measures was maximal at frontal regions. Decreases in both measures were found when participants were distracted by a secondary task. For neither measure were developmental effects noted. However, evoked gamma power was significantly enhanced with the presentation of a novel stimulus, especially at the right frontal site (F4); frontal evoked gamma phase synchrony also showed enhancement for novel stimuli but only for our two oldest age groups (16-18 year olds and adults). Induced gamma band responses also varied with task-dependent cognitive stimulus properties. In the induced gamma power response in all age groups, target stimuli generated the highest power values at the parietal region, while the novel stimuli were always below baseline. Target stimuli increased induced synchrony in all regions for all participants, but the novel stimulus selectively affected participants dependent on their age and gender. Adult participants, for example, exhibited a reduction in gamma power, but an increase in synchrony to the novel stimulus within the same region. Induced gamma synchrony was more sensitive to the gender of the participant than was induced gamma power. While induced gamma power produced little effects of age, gamma synchrony did have age effects. These results confirm that the perceptual process which regulates gamma power is distinct from that which governs the synchronization for neuronal firing, and both gamma power and synchrony are important factors to be considered for the "binding" hypothesis. However, there is surprisingly little effect of age on the absolute levels of or distribution of EEG gamma in the age range investigated.
Resumo:
Gamma-aminobutyric acid (GAB A) is a ubiquitous non-protein amino acid synthesized via the decarboxylation of L-glutamate in a reaction catalyzed by the cytosolic enzyme L-glutamate decarboxylase (GAD). In animals it functions as an inhibitory neurotransmitter. In plants it accumulates rapidly in response to various stresses, but its function remains unclear. The hypothesis that GABA accumulation in leaf tissue may function as a plant resistance mechanism against phytophagous insect activity was investigated. GABA accumulation in response to mechanical stimulation, mechanical damage and insect activity was demonstrated. In wt tobacco (Nicotiana tabacum cv Samsun), mechanical stimulation or damage caused GABA to accumulate within 2 min from mean levels of 14 to 37 and 1~9 nmol g-l fresh weight (FW), respectively. In the transgenic tobacco strain CaMVGAD27c overexpressing Petunia GAD, the same treatments caused GABA to accumulate from 12 to 59 and 279 nmol g-l FW, respectively. In the transgenic tobacco strain CaMVGADilC 11 overexpressing Petunia GAD lacking an autoinhibitory domain, mechanical stimulation or damage caused GABA to accumulate from 180 to 309 and 630 nmol g-l FW, respectively. Ambulatory activity by tobacco budworm (TBW) larvae (Heliothis virescens) on leaves of CaMVGAD27c tobacco caused GABA to accumulate from 28 to 80 nmol g-l FW within 5 min. Ambulatory and leaf-rolling activity by oblique banded leaf roller (OBLR) larvae (Choristoneura rosaceana cv Harris) on wt soybean leaves (Glycine max cv Harovinton) caused GABA to accumulate from 60 to 1123 nmol g-l FW within 20 min. Increased GABA levels in leaf tissue were shown to affect phytophagous preference in TBW larvae presented with wt and transgenic tobacco leaves. When presented with leaves of Samsun wt and CaMVGAD27c plants, TBW larvae consumed more wt leaf tissue (640 ± 501 S.D. mm2 ) than transgenic leaf tissue (278 ± 338 S.D. mm2 ) nine times out of ten. When presented with leaves of Samsun wt and CaMVGAD~C11 plants, TBW larvae consumed more transgenic leaf tissue (1219 ± 1009 S.D. mm2 ) than wt leaf tissue (28 ± 31 S.D. mm2 ) ten times out of ten. These results indicate that: (1) ambulatory activity of insect larvae on leaves results in increased GABA levels, (2) transgenic tobacco leaves with increased capacity for GABA synthesis deter feeding, and (3) transgenic tobacco leaves with constitutively higher GABA levels stimulate feeding.
Resumo:
Young soybean plants (Glycine ~. L. cultivar Harosoy '63), grown under controlled conditions, were exposed to gamma radiation on a single occasion. One hour following exposure to 3,750 rads, the mature trifoliate leaf of the soybean plant was isolated in a closed system and permitted to photoassimilate approximately 1-5 pCi of 14C02 for 15 minutes. After an additional 45 minute-period, the plant was sacrificed and the magnitude of translocation and distribution pattern of 14C determined. In the non-irradiated plants 18~ of the total 14C recovered was outside the fed leaf blades and of this translocated 14c, 28~ was above the node of the fed leaf, 38~ in the stem below the node, 28~ in the roots and 7~ in the petiole. As well, in the irradiated plants, a smaller per cent (6~) of the total 14 C recovered was exported out of the source leaf blades. Of this translocated 14c , a smaller per cent (20~) was found in the apical region above the node of the source leaf and a higher per cent (45~) was recovered from the stem below the node and in the petiole (11~). The per cent of exported 14 C recovered from the root was unaffected by the radiation. Replacement of the shoot apex with 20 ppm IAA immediately following irradiation, only J partially increased the magnitude of translocation but did completely restore the pattern of distribution to that observed in the non-irradiated plants. From supplementary studies showing a radiationinduced reduction of photosynthetic rates in the source leaf and a reduction of the cumulative stem and leaf lengths in the apical sink region, the observed effects of radiation on the translocation process have been correlated to damage incurred by the source and sink regions. These data suggest that the reduction in the magnitude of translocation is the result of damage to both the source and sink regions rather than the phloem conducting tissue itself, whereas the change in the pattern of translocation is probably the result of a reduced rate of 14C-assimilate movement caused by a radiation-induced decrease of sink metabolism, especially the decrease in the metabolism of the apical sink.
Resumo:
The hypothesis that rapid y-aminobutyric acid (GABA) accumulation is a plant defense against phytophagous insects was investigated. Simulation of mechanical damage resulting from phytophagous insect activity increased soybean (Glycine max L.) leaf GABA 10- to 25-fold within 1 to 4 min. Pulverizing leaf tissue resulted in a value of 2. 15 (±O. 11 SE) ~mol GABA per gram fresh weight. Increasing the GABA levels in a synthetic diet from 1.6 to 2.6 Jlffiol GABA per gram fresh weight reduced the growth rates, developmental rates, total biomass (50% reduction), and survival rates (30% reduction) of cultured Oblique banded leaf-roller (OBLR) (Choristonellra rosacealla Harris) larvae. In field experiments OBLR larvae were found predominantly on young terminal leaves which have a reduced capacity to produce GABA in response to mechanical damage. Glutamate decarboxylase (GAD) is a cytosolic enzyme which catalyses the decarboxylation of L-Glu to GABA. GAD is a calmodulin binding enzyme whose activity is stimulated dramatically by increased cytosolic H+ or Ca2 + ion concentrations. Phytophagous insect activity will disrupt the cellular compartmentation of H+ and Ca2 +, activate GAD and subsequent GABA accumulation. In animals GABA is a major inhibitory neurotransmitter. The possible mechanisms resulting in GABA inhibited growth and development of insects are discussed.
Resumo:
Vitamin D metabolites are important in the regulation of bone and calcium homeostasis, but also have a more ubiquitous role in the regulation of cell differentiation and immune function. Severely low circulating 25-dihydroxyvitamin D [25(OH)D] concentrations have been associated with the onset of active tuberculosis (TB) in immigrant populations, although the association with latent TB infection (LTBI) has not received much attention. A previous study identified the prevalence of LTBI among a sample of Mexican migrant workers enrolled in Canada's Seasonal Agricultural Workers Program (SA WP) in the Niagara Region of Ontario. The aim of the present study was to determine the vitamin D status of the same sample, and identify if a relationship existed with LTBI. Studies of vitamin D deficiency and active TB are most commonly carried out among immigrant populations to non-endemic regions, in which reactivation of LTBI has occurred. Currently, there is limited knowledge of the association between vitamin D deficiency and LTBI. Entry into Canada ensured that these individuals did not have active TB, and L TBI status was established previously by an interferon-gamma release assay (IGRA) (QuantiFERON-TB Gold In-Tube®, Cellestis Ltd., Australia). Awareness of vitamin D status may enable individuals at risk of deficiency to improve their nutritional health, and those with LTBI to be aware of this risk factor for disease. Prevalence of vitamin D insufficiency among the Mexican migrant workers was determined from serum samples collected in the summer of 2007 as part of the cross sectional LTBI study. Samples were measured for concentrations of the main circulating vitamin D metabolite, 25(OH)D, with a widely used 1251 250HD RIA (DiaSorin Inc.®, Stillwater, MN), and were categorized as deficient «37.5 nmoI/L), insufficient (>37.5 nmollL, < 80 nmol/L) or sufficient (2::80 nmoI/L). Fisher's exact tests and t tests were used to determine if vitamin D status (sufficiency or insufficiency) or 25(OH)D concentrations significantly differed by sex or age categories. Predictors of vitamin D insufficiency and 25(OH)D concentrations were taken from questionnaires carried out during the previous study, and analyzed in the present study using multiple regression prediction models. Fisher's exact test and t test was used to determine if vitamin D status or 25(OH)D concentration differed by LTBI status. Strength of the relationship between interferongamma (IFN-y) concentration (released by peripheral T cells in response to TB antigens) and 25(OH)D concentration was analyzed using a Spearman correlation. Out of 87 participants included in the study (78% male; mean age 38 years), 14 were identified as LTBI positive but none had any signs or symptoms of TB reactivation. Only 30% of the participants were vitamin D sufficient, whereas 68% were insufficient and 2% were deficient. Significant independent predictors of lower 25(OH)D concentrations were sex, number of years enrolled in the SA WP and length of stay in Canada. No significant differences were found between 25(OH)D concentrations and LTBI status. There was a significant moderate correlation between IFN-y and 25(OH)D concentrations ofLTBI-positive individuals. The majority of participants presented with Vitamin D insufficiency but none were severely deficient, indicating that 25(OH)D concentrations do not decrease dramatically in populations who temporarily reside in Canada but go back to their countries of origin during the Canadian winter. This study did not find a statistical relationship between low levels of vitamin D and LTBI which suggests that in the presence of overall good health, lower than ideal levels of 2S(OH)D, may still be exerting a protective immunological effect against LTBI reactivation. The challenge remains to determine a critical 2S(OH)D concentration at which reactivation is more likely to occur.