13 resultados para ISO 14067

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Browns sediment with clasts ranging from sub-angular to sub-rounded in shape. The clast size ranges from small to large. Rotation structures and necking structures are commonly seen in this sample. Grain stacking/crushing along with lineations can also be seen throughout the image.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the regulation of carbohydrate metabolism and glucose uptake through changes in skeletal muscle cell volume. Using an established invitro isolated whole muscle model, soleus (SOL) and extensor digitorum longus (EDL) muscles were dissected from male rats and incubated in an organ bath containing Sigma medium-199 with 8 mM D-glucose altered to target osmolality (hypo-osmotic: HYPO, iso-osmotic: ISO, hyper-osmotic: HYPER; 190, 290, 400 mmol/kg). Muscles were divided into two groups; metabolite (MM) and uptake (MU). MM (N=48) were incubated for 60 minutes and were then immediately flash frozen. MU (N=24) were incubated for 30 minutes and then the extracellular fluid was exchanged for media containing ^H-glucose and ^'*C-mannitol and incubated for another 30 minutes. After the incubation, the muscles were freeze clamped. Results demonstrated a relative water decrease and increase in HYPER and HYPO, respectively. EDL and SOL glucose uptakes were found to be significantly greater in HYPER conditions. The HYPER condition resulted in significant alterations in muscle metabolite concentrations (lower glycogen, elevated lactate, and G-6-P) suggesting a catabolic cell state, and an increase in glycogen synthase transformation when compared to the HYPO group. In conclusion, skeletal muscle cell volume alters rates of glucose uptake with further alterations in muscle metabolites and glycogen synthase transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to examine cell glucose kinetics in rat skeletal muscle during iso-osmotic recovery from hyper- and hypo-osmotic stress. Rat EDL muscles were incubated for sixty minutes in either HYPO (190 mmol/kg), ISO (290 mmol/kg), or HYPER (400 mmol/kg) media (Sigma medium-199, 8 mM glucose) according to an established in vitro whole muscle model. In addition to sixty minute baseline measures in aniso-osmotic conditions, (HYPO-0 n=8; ISO- 0, n=S; HYPER-0, n=8), muscles were subjected to either one minute (HYPO-1 n=8; ISO-1, n=8; HYPER-1, n=8) or five minutes (HYPO-5 n=8; ISO-5, n=8; HYPER-5, n=8) of iso-osmotic recovery media and analyzed for metabolite content and glycogen synthase percent activation. To determine glucose uptake during iso-osmotic recovery, muscles (n=6 per group) were incubated for sixty minutes in either hypo-, iso-, or hyper-osmotic media immediately followed by five minutes of iso-osmotic media containing 3H-glucose and 14 C-mannitol. Increased relative water content/decreased [glucose] (observed in HYPO-0) and decreased water content/increased [glucose] (observed in HYPER-0) returned to ISO levels within 5 minutes of recovery. Glycogen synthase percent activation increased significantly in HYPO-5 over iso-osmotic controls. Glucose uptake measurements revealed no significant differences between groups. It was determined that [glucose] and muscle water content rapidly recovered from osmotic stress demonstrating skeletal muscle's resilience to osmotic stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the current investigation was to establish an in-l'itro skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated. whole muscle (SOL and EDL) was dissected from Long Evans rats and incubated for 60 min in Sigma Medium-199 (resting tension (lg). bubbled with 95:5% 02:C02, 30 ± 2°C, and pH 7.4). Media osmolality was altered to simulate hypo-osmotic (190 ± 10 Osm) (HYPO) or hyper-osmotic conditions (400 ± 10 Osm) (HYPER) while an iso-osmotic condition (290± 1 0 Osm) (CON) served as a control (n= 17.19.17). Following incubation, relative muscle water content decreased with HYPER and increased with HYPO in both muscle types (p<0.05). The cross-sectional area of HYPO SOL type I and type II fibres increased (p<0.05) while the EDL type 11 fibre area decreased in HYPER and increascd from HYPO exposure. Furthermore, HYPER exposure in both muscles lead to decreased ATP and phosphocreatine (p<0.05) and increased creatine and lactate (p<0.05) compared to CON. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acutc alterations in muscle water content and resting muscle metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the regulation of carbohydrate metabolism through changes in skeletal muscle cell volume immediately post contraction and during recovery. Using an established in vitro isolated muscle strip model, soleus (SOL) and extensor digitorum longus (EDL) were dissected from male rats and incubated in an organ bath (perfused with 95% O2; 5% CO2, pH 7.4, temperature 25°C) containing medium- 199 altered to a target osmotic condition (iso-, hypo- or hyper-osmotic; 290, 1 80, 400 mmol/kg). Muscles were stimulated for 10 minutes (40 Hz SOL; 30 Hz EDL) and then either immediately flash frozen or allowed to recover for 20 minutes before subsequent metabolite and enzyme analysis. Results demonstrated a relative water decrease in HYPER vs. HYPOosmotic condition (n=8/group; p<0.05) regardless of muscle type. Specifically, the SOL HYPER condition had elevated metabolite concentrations after 10 minutes of stimulation in comparison to both HYPO and ISO (p<0.05), while EDL muscle did not show any significant difTerences between the HYPER or HYPO conditions. After 20 minutes of recovery, metabolic changes occurred in both SOL and EDL with the SOL HYPER condition showing greater relative changes in metabolite concentrations versus HYPO. The results of the current study have demonstrated that osmotic imbalance induces metabolic change within the skeletal muscle cell and muscle type may influence the mechanisms utilized for cell volume regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new system was employed to study amplification of t,he DHF'R gene DFB,1 ) in Sa<,:;charoillYCB§. .Q~~Yi...S!i<;1~. . This system consists of a series of yeast strains containing a casset,te which encodes t he yeast, D..ERl gene ttghtly linked tjO a f usion of the yeast 1EU2. regulat,ory region wi tJ1 the LAQZ str ctural gene from E. cO.1-1 (,) . M. Clement , unpubl i,::;hed) . Th's casset;t e was shown t.o be integrat,ed int o a unj que chromosomal l ocati on in each strain . Yeast cells were se l ected for MTX-resistance and overproduction of ~ galac t osi d se ( B-gal ). Since the inserted DF'Rl and ~ACZ genes are independently regulated, it was thought that cel l s with this phenotype probably contain e d ampl if ications of the cassette. A lar ge variat ion in the f requn y o f MTX-resistance was found between the di ff e r ent str ains. These freqlen c ~ es r anged from about 2 x 10 - 7 fo r a population of cells containing the cassette integrated at, the BI J2.l gene in t,he middle of the long arm of chromosome V, to about 5 x 10-4 for a strain with the cassette i nserted in the r DNA cluster Abo It 85% of the MTX- res i stcmt iso l ates examined showed enhanced B·-gal act i v ity rel a t ive t o the parental strain . For the ma jorit y of strains, the mean B- gal activity in drug-r sistant clones was about 3 times that o f the parent following a single se l ect i on step . I n con t r ast, primary MTX-resistant derivat~ves of cells with the cassette inserted 3 at the rDNA cluster showed inc r eases in B- gal activity ranging from 9 - 14 f old r elative to the parent. Analysis of the latte r s train by Southe rn hybr idization indicated that the cassette was inde e d amplified several fold in MTX-re sistant derivatives. A sing l e strain, in which the cassette was inserted at the !lEA;], loc u.s , was used to examine in more detai 1 , the parameters affecting DFRl gene amplificat~ion in yeast . The mean B- gal activity in drug-resistant derivatives of this strain could be increased from 3 to 6 or 7 fold relative to the parent, by stepwise sel ection using increasing MTX concentrations. B-gal overproduction was found to be un stable in all primary and highly -resistant isolates examined. There was no indication, h owever, of a decrease i n growth r a t e in MTX-res i s tant cells which overproduced B - gal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular hyper-osmotic (HYPER) stress increases glucose uptake to defend cell volume, when compared to iso-osmotic (ISO) conditions in skeletal muscle. The purpose of this study was to determine a time course for changes in common signaling proteins involved in glucose uptake during acute hyper-osmotic stress in isolated mammalian skeletal muscle. Rat extensor digitorum longus (EDL) muscles were excised and incubated in a media formulated to mimic ISO (290 ± 10 mmol/kg) or HYPER (400 ± 10 mmol/kg) extracellular condition (Sigma Media-199). Signaling mechanisms were investigated by determining the phosphorylation states of Akt, AMPK, AS160, cPKC and ERK after 30, 45 and 60 minutes of incubation. AS160 was found to be significantly more phosphorylated in HYPER conditions compared to ISO after 30 minutes (p<0.01). It is speculated that AS160 phosphorylation increases glucose transporter 4 (GLUT4) content at the cell surface thereby facilitating an increase in glucose uptake under hyper-osmotic stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypo-osmolality influences tissue metabolism, but research on protein turnover in skeletal muscle is limited. The purpose of this investigation was to examine the effects of hypo-osmotic stress on protein turnover in rat skeletal muscle. We hypothesized increased protein synthesis and reduced degradation following hypo-osmotic exposure. EDL muscles (n=8/group) were incubated in iso-osmotic (290 Osm/kg) or hypo-osmotic (190 Osm/kg) modified medium 199 (95% O2, 5% CO2, pH 7.4, 30±2 °C) for 60 min, followed by 75 min incubations with L-U[14C]phenylalanine or cycloheximide to determine protein synthesis and degradation. Immunoblotting was performed to assess signalling pathways involved. Phenylalanine uptake and incorporation were increased by 199% and 169% respectively in HYPO from ISO (p < 0.05). This was supported by elevated phosphorylation of mTOR Ser2448 (+12.5%) and increased Thr389 phosphorylation on p70s6 kinase (+23.6%) (p < 0.05). Hypo-osmotic stress increased protein synthesis and potentially amino acid uptake. Future studies should examine the upstream mechanisms involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to examine the effect of hyper-osmotic stress on protein turnover in skeletal muscle tissue using an established in-vitro model. Rat EDL muscles were incubated in either hyper-osmotic (400 ± 10 Osm) or isoosmotic (290 ± 10 Osm) custom-modified media (Gibco). L-[14C]-U-phenylalanine (n=8) and cycloheximide (n=8) were used to quantify protein synthesis and degradation, respectively. Western blotting analyses was performed to determine the activation of protein synthesis and degradation pathways. During hyperosmotic stress, protein degradation increased (p<0.05), while protein synthesis was decreased (p<0.05) as compared to the iso-osmotic condition. The decline in protein synthesis was accompanied by a decrease (p<0.05) in p70s6 kinase phosphorylation, while the increase in protein degradation was associated with an increase (p<0.05) in autolyzed calpain. Therefore, hyper-osmotic extracellular stress results in an intracellular catabolic environment in mammalian skeletal muscle tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methoxypyrazines are aroma active compounds found in many wine varietals. These compounds can be of either grape-derived nature or can be introduced into wines via Coccinellidae beetles. Regardless of their origin, methoxypyrazines can have either a beneficial role for wine quality, contributing to the specificity of certain wine varietals (Cabernet sauvignon, Cabernet franc, Sauvignon blanc) or a detrimental role, particularly at higher concentrations, resulting in overpowering green, unripe and herbaceous notes. When methoxypyrazines of exogenous nature are responsible for these unpleasant characteristics, wines are considered to be affected by what is generally known as Ladybug taint (LBT). This is work is a collection of studies seeking to create a sensitive analytical method for the detection and quantification of methoxypyrazines in wines; to investigate the role of different Coccinellidae species in the tainting of wines with LBT and identify the main compounds in ladybug tainted wines responsible for the typical green herbaceous characteristics; to determine the human detection threshold of 2,5-dimethyl-3-methoxypyrazine in wines as well as investigate its contribution to the aroma of wines; and finally to survey methoxypyrazine concentrations in a large set of wines from around the world. In the first study, an analytical method for the detection and quantitation of methoxypyrazines in wines was created and validated. The method employs multidimensional Gas Chromatography coupled with Mass Spectrometry to detect four different methoxypyrazines (2,5-dimethyl-3-methoxypyrazine, isobutyl methoxypyrazine, secbutyl methoxypyrazine and isopropyl methoxypyrazines) in wine. The low limits of detection for the compounds of interest, improved separation and isolation capabilities, good validation data, as well as the ease of use recommend this method as a good alternative to the existing analytical methods for methoxypyrazine detection in wine. In the second study the capacity of two Coccinellidae species, found in many wine regions – Harmonia axyridis and Coccinella septempunctata - to taint wines is evaluated. Coccinella septempunctata is shown to be as capable as causing LBT in wines as Harmonia axyridis. Dimethyl methoxypyrazine, previously thought to be of exogenous nature only (from Coccinellidae haemolymph), is also detected in control (untainted) wines. The main odor active compounds in LBT wines are investigated through Aroma Extract Dilution Assay. These compounds are identified as isopropyl methoxypyrazine, sec- and iso- butyl methoxypyrazine. In the third study, the human detection threshold for dimethyl methoxypyrazine in wine is established to be 31 ng/L in the orthonasal modality and 70 ng/L retronasally. After wines spiked with various amounts of dimethyl methoxypyrazine are evaluated sensorally, dimethyl methoxypyrazine causes significant detrimental effects to wine aroma at a concentration of 120 ng/L. The final study examines methoxypyrazine (dimethyl methoxypyrazine, isopropyl methoxypyrazine, secbutyl methoxypyrazine and isobutyl methoxypyrazine) concentrations in 187 wines from around the world. Dimethyl methoxypyrazine is detected in the majority of the red wines tested. Data are interpreted through statistical analyses. A new measure for predicting greenness/herbaceousness in wines - methoxypyrazine “total impact factor” is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to isoflavones (ISO), abundant in soy protein infant formula, for the first 5 days of life results in higher bone mineral density (BMD),greater trabecular connectivity and higher fracture load of lumbar vertebrae (LV) at adulthood. The effect of lengthening the duration of exposure to ISO on bone development has not been studied. This study determined if providing ISO for the first 21 days of life, which more closely mimics the duration that infants are fed soy protein formula, results in higher BMD, improved bone structure and greater strength in femurs and LV than a 5-day protocol. Female CD-1 mice were randomized to subcutaneous injections of ISO (7 Q1 mg kg/body weight/day) or corn oil from postnatal day 1 to 21. BMD, structure and strength were measured at the femur and LV at 4 months of age, representing young Q2 adulthood. At the LV, exposure to ISO resulted in higher (P,0.05) BMD, trabecular connectivity and fracture load compared with control (CON). Exposure to ISO also resulted in higher (P,0.05) whole femur BMD, higher (P,0.05) bone volume/total volume and Q3 lower (P,0.05) trabecular separation at the femur neck, as well as greater (P,0.05) fracture load at femur midpoint and femur neck compared with the CON group. Exposure to ISO throughout suckling has favorable effects on LV outcomes, and, unlike previous studies using 5-day exposure to ISO, femur outcomes are also improved. Duration of exposure should be considered when using the CD-1 mouse to model the effect of early life exposure of infants to ISO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mice, exposure to isoflavones (ISO), abundant in soy infant formula, during the first 5 d of life alters structural and functional development of reproductive organs. Effects of longer exposures are unknown. The study objective was to evaluate whether exposure to a combination of daidzein and genistein in the first 10 compared to 5 d of life results in greater adverse effects on ovarian and uterine structure in adult mice. Thirteen litters of 8–12 pups were cross-fostered and randomized to corn oil or ISO (2 mg daidzein + 5 mg genistein/kg body weight/d) for the first 5 or 10 d of life. The 10-d protocol mimicked the period when infants are fed soy protein formula (SPF) but avoids the time when suckling pups can consume the mother’s diet. Body and organ weights and histology of ovaries and uteri were analyzed. There were no differences in the ovary or uterus weight, number of ovarian follicles, number of multiple oocyte follicles, or percent of ovarian cysts with 5 or 10 d of ISO intervention compared to respective controls. The 10-d ISO group had higher body weights from 6 d to 4 mo. of age and a higher percent of hyperplasia in the oviduct than the respective control. Lower numbers of ovarian corpus lutea and a higher incidence of abnormal changes were reported in the uteri of both ISO groups compared to their respective controls. Five- and 10-d exposure to ISO had similar long-lasting adverse effects on the structures of ovaries and uterus in adult mice. Only the 10-d ISO exposure resulted in greater body weight gain at adulthood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of increased extracellular leucine concentration on protein metabolism in skeletal muscle cells when exposed to 3 different osmotic stresses. L6 skeletal muscle cells were incubated in either a normal or supplemental leucine (1.5mM) medium set to hypo-osmotic (230 ± 10 Osm), iso-osmotic (330 ± 10 Osm) or hyper-osmotic (440 ± 10 Osm) conditions. 3H-tyrosine was used to quantify protein synthesis. Western blotting analysis was performed to determine the activation of mTOR, p70S6k, ubiquitin, actin, and μ-calpain. Hypo-osmotic stress resulted in the greatest increase in protein synthesis rate under the normal-leucine condition while iso-osmotic stress has the greatest increase under the elevated-leucine condition. Elevated-leucine condition had a decreased rate in protein degradation over the normal condition within the ubiquitin proteasome pathway (p<0.05). Leucine and hypo-osmotic stress therefore creates a favourable environment for anabolic events to occur.