8 resultados para ION TRANSFER-REACTIONS
em Brock University, Canada
Resumo:
Part I: Ultra-trace determination of vanadium in lake sediments: a performance comparison using O2, N20, and NH3 as reaction gases in ICP-DRC-MS Thermal ion-molecule reactions, targeting removal of specific spectroscopic interference problems, have become a powerful tool for method development in quadrupole based inductively coupled plasma mass spectrometry (ICP-MS) applications. A study was conducted to develop an accurate method for the determination of vanadium in lake sediment samples by ICP-MS, coupled with a dynamic reaction cell (DRC), using two differenvchemical resolution strategies: a) direct removal of interfering C10+ and b) vanadium oxidation to VO+. The performance of three reaction gases that are suitable for handling vanadium interference in the dynamic reaction cell was systematically studied and evaluated: ammonia for C10+ removal and oxygen and nitrous oxide for oxidation. Although it was able to produce comparable results for vanadium to those using oxygen and nitrous oxide, NH3 did not completely eliminate a matrix effect, caused by the presence of chloride, and required large scale dilutions (and a concomitant increase in variance) when the sample and/or the digestion medium contained large amounts of chloride. Among the three candidate reaction gases at their optimized Eonditions, creation of VO+ with oxygen gas delivered the best analyte sensitivity and the lowest detection limit (2.7 ng L-1). Vanadium results obtained from fourteen lake sediment samples and a certified reference material (CRM031-040-1), using two different analytelinterference separation strategies, suggested that the vanadium mono-oxidation offers advantageous performance over the conventional method using NH3 for ultra-trace vanadium determination by ICP-DRC-MS and can be readily employed in relevant environmental chemistry applications that deal with ultra-trace contaminants.Part II: Validation of a modified oxidation approach for the quantification of total arsenic and selenium in complex environmental matrices Spectroscopic interference problems of arsenic and selenium in ICP-MS practices were investigated in detail. Preliminary literature review suggested that oxygen could serve as an effective candidate reaction gas for analysis of the two elements in dynamic reaction cell coupled ICP-MS. An accurate method was developed for the determination of As and Se in complex environmental samples, based on a series of modifications on an oxidation approach for As and Se previously reported. Rhodium was used as internal standard in this study to help minimize non-spectral interferences such as instrumental drift. Using an oxygen gas flow slightly higher than 0.5 mL min-I, arsenic is converted to 75 AS160+ ion in an efficient manner whereas a potentially interfering ion, 91Zr+, is completely removed. Instead of using the most abundant Se isotope, 80Se, selenium was determined by a second most abundant isotope, 78Se, in the form of 78Se160. Upon careful selection of oxygen gas flow rate and optimization ofRPq value, previous isobaric threats caused by Zr and Mo were reduced to background levels whereas another potential atomic isobar, 96Ru+, became completely harmless to the new selenium analyte. The new method underwent a strict validation procedure where the recovery of a suitable certified reference material was examined and the obtained sample data were compared with those produced by a credible external laboratory who analyzed the same set of samples using a standardized HG-ICP-AES method. The validation results were satisfactory. The resultant limits of detection for arsenic and selenium were 5 ng L-1 and 60 ng L-1, respectively.
Resumo:
The fragmentation behavior of aryltin compounds [(p-ThAnis)nSnPh4.n (n=l-4); (p-ThAnis)3SnX (X=C1, Br, I); (o-CH30C6H4)3SnCl; Ph3Sn(o-pyr)] have been studied comparatively under EI and FAB ionization modes. Alkali halides were run under FAB mode. For the aryltin compounds, the effect of ligand type on the spectra have been explored in both EI and FAB modes. The fragmentation mechanisms have been examined with linked scans, such as fragment ion scans (B/E) and parent ion scans (B^/E). Ab Initio molecular orbital calculations were used to determine the structures of the fragments by comparing their relative stabilities. In the EI MS studies, negative ion EI mode has also been used for some of the aryltin compounds, to examine the possible ion molecule reactions under low pressures at 70eV. In the positive ion FAB MS studies, matrix optimization experiments have been carried out. Negative ion FAB experiments of all the compounds have been done in two different ways. Finally, the comparison of the two methods, EI MS and FAB MS, have been made.For alkali halides, the studies focused on the FAB MS behavior under different conditions. The intensities of cluster ions were reported, and the anomalies in the intensity distribution was also discussed.
Resumo:
This research was directed mainly towards the investigation of the reacti.ons of· substituted chlorobenziophenones under strongly basi,c conditions. The work 'can be divided into two main sections. The Introduction deals mainly with historical studies on aryne chemistry and the Haller-Bauer reaction. Secti.on I i.s concerned with syntheses of 2-benzamido-2'chlorobenzophenone and 2-benzamido~3'-chlorobenzophenone,and with thei,r respective reactions wi.th potassium amide in ammonia. o-Chlorophenylacetic acid was converted to the acid chloride and then by Friedel-Craftsreaction with benzene to w-(o-chlorophenyl)acetophenone. Reaction wi.th phenylhydrazine and Fischer cyclization gave 3- (0chlorophenyl)- 2-phenylindole, which was ozonized to 2-benzamido-2'chlorobenzophenone. The isomeric 3' -chlor,..o ke: tone was similarly synthesised from m-chlorophenylacetic acid. Both the 2'- and 3' -ch.loroketones gave N-benzoylacridone on treatment with potassium amide in ammonia; an aryne mechanism is involved for the 3'-chloroketone but aryne and nucleophilic substitution mechanisms are possible for the 2'-chloroketone. Hydrolysis of the 2'- and 3'-chloroketones gave 2-amino-2'chlorobenzophenone and 2-amino-3'-chlorobenzophenone respectively. A second new acridone synthesis is given in the Appendix involving reactions of these two ketones with potassium t-butoxide in t-butylbenzene. i Section 2 deals with the investigation of the reaction of some tricyclic ch1orobenzophenones with potassium amide in liquid ammonia. These were 1-ch1orof1uorenone; which was pr~pared in several steps from f1uoranthene, and 1- and 2-ch1oroanthraquinones. 1-Ch1orof1uorenone gave 1-aminof1uorenone ; 1-ch1oroanthraquinone gave 1- and 2-aminoanthraquinones; 2-ch1oroanthraquinone was largely recovered from the attempted reaction.
Resumo:
The human a-tocopherol transfer protein (h-a-TTP) is understood to be the entity responsible for the specific retention of a-tocopherol (a-toc) in human tissues over all other forms of vitamin E obtained from the diet. a-Tocopherol is the most biologically active form of vitamin E, and to date has been studied extensively with regard to its antioxidant properties and its role of terminating membrane lipid peroxidation chain reactions. However, information surrounding the distribution of a-tocopherol, specifically its delivery to intracellular membranes by a-TTP, is still unclear and the molecular factors influencing transfer remain elusive. To investigate the mechanism of ligand transfer by the h-a-TTP, a fluorescent analogue of a-toc has been used in the development of a fluorescence resonance energy transfer (FRET) assay. (/?)-2,5,7,8-tetramethyl-2-[9-(7-nitro-benzo[l,2,5]oxdiazol-4-ylamino)-nonyl]- chroman-6-ol (NBD-toc) has allowed for the development of the FRET-based ligand transfer assay. This ligand has been utilized in a series of experiments where changes were made to acceptor lipid membrane concentration and composition, as well as to the ionic strength and viscosity of the buffer medium. Such changes have yielded evidence supporting a collisional mechanism of ligand transfer by a-TTP, and have brought to light a new line of inquiry pertaining to the nature of the forces governing the collisional transfer interaction. Through elucidation of the transfer mechanism type, a deeper understanding of the transfer event and the in vivo fate of a-tocopherol have been obtained. Furthermore, the results presented here allow for a deeper investigation of the forces controlling the collisional protein-membrane interaction and their effect on the transfer of a-toc to membranes. Future investigation in this direction will raise the possibility of a complete understanding of the molecular events surrounding the distribution of a-toc within the cell and to the body's tissues.
Resumo:
This work contains the results of a series of reduction studies on polyhalogenated aromatic compounds and related ethers using alkali metals in liquid ammonia. In general, polychlorobenzenes were reduced to t he parent aromatic hydrocarbon or to 1 ,4-cyc1ohexadiene, and dipheny1ethers were cleaved to the aroma tic hydrocarbon and a phenol. Chlorinated dipheny1ethers were r eductive1y dechlorinated in the process. For example, 4-chlorodipheny1- ether gave benzene and phenol. Pentach1orobenzene and certain tetrachlorobenzenes disproportionated to a fair degree during the reduction process if no added proton source was present. The disproportionation was attributed to a build-up of amide ion. Addition of ethanol completely suppressed the formation of any disproportionation products. In the reductions of certain dipheny1ethers , the reduction of one or both of the dipheny1ether rings occurred, along with the normal cleavage. This was more prevalent when lithium was the metal used . As a Sidelight, certain chloropheno1s were readily dechlorinated. In light of these results, the reductive detoxification of the chlorinated dibenzo-1,4-dioxins seems possible with alkali metals in l iquid ammonia.
Resumo:
This research was directed mainly towards the investigation of the reactions of allylic amineimides. The work can be divided into two main sections. Section 1 of the thesis deals mainly with thermolysis studies of amineimides. Sections 1a and 1b represent a comprehensive survey of amineimide literature up to 1971. N-A1ly1-N,N-dirnethylarnine-benzirnide was prepared and rearranged at 1400 to l-allyl-1-benzoyl-2,2-dimethylhydrazine. A tentative mechanism involving an initial migration to the carbonyl oxygen was disproved by incorporating the amineimide system into a five-membered ring. N,N~Dimethyl-N-propargylamine-benzimidedid not rearrange on heating; but the hydrobromide, on heating, disproportionated to give 1-benzoyl~2,2,2-trimethylhydraziniumbromide and I-benzoyl-2,2~ dimethylhydrazine. l-Ally'l--l, I-dimethyl-2-benzoy-lhydrazinium bromide and 1~benzoy-1-2,2, 2-trimethy-lhydrazinium iodide both disproportionated to give l~benzoyl-2,2-dimethylhydrazine. Section 1 concludes with a discussion of the mechanisms of ally'lic migrations in amineimides proposed by J. E. Baldwin. Section 2 deals with the formation of five-membered heterocyclic compounds from amineimides by bromination. 1,1-Dimethyl-2benzoyl- 4-bromopyrazolidinium bromide was formed from N-allyl-N,Ndime thy-lamtne-benzimide , 1,1-dimethyl-2-benzoyl-4-bromopyrazol-3enium bromide from N,N~dimethyl-N-propargylamine~benzimidevia the unusual acetylenic "bromonium" ion. Hydrogenolysis of both heterocyclic compounds gave the same product. The preparation was extended by forming 2,2-dimethyl-4-bromoisoxazolinium bromide from N-allylN, N-dimethylamine-N-oxide. Sections 3 and 4 cover a number of unsuccessful attempts to synthesise other amineimides and l,2-dipolar species.
Resumo:
The phosphonium salt room temperature ionic liquid tetradecyltrihexylphosphonium chloride (THPC) has been employed as an efficient reusable media for the palladium catalyzed Suzuki cross-coupling reaction of aryl halides, including aryl chlorides, under mild conditions. The cross-coupling reactions were found to proceed in THPC containing small amounts ofwater and toluene (single phase) using potassium phosphate and 1% Pd2(dba)3'CHCI3. Variously substituted iodobenzenes, including electron rich derivatives, reacted efficiently in THPC with a variety of arylboronic acids and were all complete within 1 hour at 50°C. The corresponding aryl bromides also reacted under these conditions with the addition of a catalytic amount of triphenylphosphine that allowed for complete conversion and high isolated yields. The reactions involving aryl chlorides were considerably slower, although the addition of triphenylphosphine and heating at 70°C allowed high conversion of electron deficient derivatives. Addition of water and hexane to the reaction products results in a triphasic system, from which the catalyst was then recycled by removing the top (hexanes) and bottom (aqueous) layers and adding the reagents to the ionic liquid which was heated again at 50°C; resulting in complete turnover of iodobenzene. Repetition of this procedure gave the biphenyl product in 82-97% yield (repeated five times) for both the initial and recycled reaction sequences. IL ESTERIFICATIONREACTION A new class oftrialkylphosphorane has been prepared through reaction of a trialkylphosphine with 2-chlorodimethylmalonate in the presence oftriethylamine. These new reagents promote the condensation reaction of carboxylic acids with alcohols to provide esters along with trialkylphosphine oxide and dimethylmalonate. The condensation reaction of chiral secondary alcohols can be controlled to give either high levels of inversion or retention through a subtle interplay involving basicity of the reaction media, solvent, and tuning the electronic and steric nature of the carboxylic acid and stenc nature of the phosphorane employed. A coherent mechanism is postulated to explain these observations involving reaction via an initial acyloxyphosphonium ion.
Resumo:
The Dudding group is interested in the application of Density Functional Theory (DFT) in developing asymmetric methodologies, and thus the focus of this dissertation will be on the integration of these approaches. Several interrelated subsets of computer aided design and implementation in catalysis have been addressed during the course of these studies. The first of the aims rested upon the advancement of methodologies for the synthesis of biological active C(1)-chiral 3-methylene-indan-1-ols, which in practice lead to the use of a sequential asymmetric Yamamoto-Sakurai-Hosomi allylation/Mizoroki Heck reaction sequence. An important aspect of this work was the utilization of ortho-substituted arylaldehyde reagents which are known to be a problematic class of substrates for existing asymmetric allylation approaches. The second phase of my research program lead to the further development of asymmetric allylation methods using o-arylaldehyde substrates for synthesis of chiral C(3)-substituted phthalides. Apart from the de novo design of these chemistries in silico, which notably utilized water-tolerant, inexpensive, and relatively environmental benign indium metal, this work represented the first computational study of a stereoselective indium-mediated process. Following from these discoveries was the advent of a related, yet catalytic, Ag(I)-catalyzed approach for preparing C(3)-substituted phthalides that from a practical standpoint was complementary in many ways. Not only did this new methodology build upon my earlier work with the integrated (experimental/computational) use of the Ag(I)-catalyzed asymmetric methods in synthesis, it provided fundamental insight arrived at through DFT calculations, regarding the Yamamoto-Sakurai-Hosomi allylation. The development of ligands for unprecedented asymmetric Lewis base catalysis, especially asymmetric allylations using silver and indium metals, followed as a natural extension from these earlier discoveries. To this end, forthcoming as well was the advancement of a family of disubstituted (N-cyclopropenium guanidine/N-imidazoliumyl substituted cyclopropenylimine) nitrogen adducts that has provided fundamental insight into chemical bonding and offered an unprecedented class of phase transfer catalysts (PTC) having far-reaching potential. Salient features of these disubstituted nitrogen species is unprecedented finding of a cyclopropenium based C-H•••πaryl interaction, as well, the presence of a highly dissociated anion projected them to serve as a catalyst promoting fluorination reactions. Attracted by the timely development of these disubstituted nitrogen adducts my last studies as a PhD scholar has addressed the utility of one of the synthesized disubstituted nitrogen adducts as a valuable catalyst for benzylation of the Schiff base N-diphenyl methylene glycine ethyl ester. Additionally, the catalyst was applied for benzylic fluorination, emerging from this exploration was successful fluorination of benzyl bromide and its derivatives in high yields. A notable feature of this protocol is column-free purification of the product and recovery of the catalyst to use in a further reaction sequence.