6 resultados para INTERACTION ENERGY

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Part I, theoretical derivations for Variational Monte Carlo calculations are compared with results from a numerical calculation of He; both indicate that minimization of the ratio estimate of Evar , denoted EMC ' provides different optimal variational parameters than does minimization of the variance of E MC • Similar derivations for Diffusion Monte Carlo calculations provide a theoretical justification for empirical observations made by other workers. In Part II, Importance sampling in prolate spheroidal coordinates allows Monte Carlo calculations to be made of E for the vdW molecule var He2' using a simplifying partitioning of the Hamiltonian and both an HF-SCF and an explicitly correlated wavefunction. Improvements are suggested which would permit the extension of the computational precision to the point where an estimate of the interaction energy could be made~

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we consider the properties of planar topological defects in unconventional superconductors. Specifically, we calculate microscopically the interaction energy of domain walls separating degenerate ground states in a chiral p-wave fermionic superfluid. The interaction is mediated by the quasiparticles experiencing Andreev scattering at the domain walls. As a by-product, we derive a useful general expression for the free energy of an arbitrary nonuniform texture of the order parameter in terms of the quasiparticle scattering matrix. The thesis is structured as follows. We begin with a historical review of the theories of superconductivity (Sec. 1.1), which led the way to the celebrated Bardeen-Cooper- Schrieffer (BCS) theory (Sec. 1.3). Then we proceed to the treatment of superconductors with so-called "unconventional pairing" in Sec. 1.4, and in Sec. 1.5 we introduce the specific case of chiral p-wave superconductivity. After introducing in Sec. 2 the domain wall (DW) model that will be considered throughout the work, we derive the Bogoliubov-de Gennes (BdG) equations in Sec. 3.1, which determine the quasiparticle excitation spectrum for a nonuniform superconductor. In this work, we use the semiclassical (Andreev) approximation, and solve the Andreev equations (which are a particular case of the BdG equations) in Sec. 4 to determine the quasiparticle spectrum for both the single- and two-DW textures. The Andreev equations are derived in Sec. 3.2, and the formal properties of the Andreev scattering coefficients are discussed in the following subsection. In Sec. 5, we use the transfer matrix method to relate the interaction energy of the DWs to the scattering matrix of the Bogoliubov quasiparticles. This facilitates the derivation of an analytical expression for the interaction energy between the two DWs in Sec. 5.3. Finally, to illustrate the general applicability our method, we apply it in Sec. 6 to the interaction between phase solitons in a two-band s-wave superconductor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenge the community college faces in helping meet the needs of the living open system of society is examined in this study. It is postulated that internalization student outcomes are required by society to reduce entropy and remain self-renewing. Such behavior is characterized as having an intrinsically motivated energy source and displays the seeking and conquering of challenge, the development of reflective knowledge and skill, full use of all capabilities, internal control, growth orientation, high self-esteem, relativistic thinking and competence. The development of a conceptual systems model that suggests how transactions among students, faculty and administration might occur to best meet the needs of internalization outcomes in students, and intrinsic motivation in faculty is a major purpose of this study. It is a speculative model that is based on a synthesis of a wide variety of variables. Empirical evidence, theoretical considerations, and speculative ideas are gathered together from researchers and theoretici.ans who are working on separate answers to questions of intrinsic motivation, internal control and environments that encourage their development. The model considers the effect administrators·have on faculty anq the corresponding effect faculty may have on students. The major concentration is on the administrator--teacher interface.For administrators the model may serve as a guide in planning effective transactions, and establishing system goals. The teacher is offered a means to coordinate actions toward a specific overall objective, and the administrator, teacher and researcher are invited to use the model to experiment, innovate, verify the assumptions on which the model is based, and raise additional hypotheses. Goals and history of the community colleges in Ontario are examined against current problems, previous progress and open system thinking. The nature of the person as a five part system is explored with emphasis on intrinsic motivation. The nature, operation, conceptualization, and value of this internal energy source is reviewed in detail. The current state of society, education and management theory are considered and the value of intrinsically motivating teaching tasks together with "system four" leadership style are featured. Evidence is reviewed that suggests intrinsically motivated faculty are needed, and "system four" leadership style is the kind of interaction-influence system needed to nurture intrinsic motivation in faculty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New density functionals representing the exchange and correlation energies (per electron) are employed, based on the electron gas model, to calculate interaction potentials of noble gas systems X2 and XY, where X (and Y) are He,Ne,Ar and Kr, and of hydrogen atomrare gas systems H-X. The exchange energy density functional is that recommended by Handler and the correlation energy density functional is a rational function involving two parameters which were optimized to reproduce the correlation energy of He atom. Application of the two parameter function to other rare gas atoms shows that it is "universal"; i. e. ,accurate for the systems considered. The potentials obtained in this work compare well with recent experimental results and are a significant improvement over those from competing statistical modelS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed the concept of split-'t to deal with the large molecules (in terms of the number of electrons and nuclear charge Z). This naturally leads to partitioning the local energy into components due to each electron shell. The minimization of the variation of the valence shell local energy is used to optimize a simple two parameter CuH wave function. Molecular properties (spectroscopic constants and the dipole moment) are calculated for the optimized and nearly optimized wave functions using the Variational Quantum Monte Carlo method. Our best results are comparable to those from the single and double configuration interaction (SDCI) method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An energy theory is formulated for the rotational energy levels in a p-complex Rydberg state of an asymmetric top molecule of symmetry C2v. The effective Hamiltonian used consists of the usual rigid rotor Hamiltonian augmented with terms representing electronic spin and orbital angular momentum effects. Criteria for assigning symmetry species to the rotational energy levels, following Houganfs scheme that uses the full molecular group,are established and given in the form of a table. This is particularly suitable when eigenvectors are calculated on a digital computer. Also, an intensity theory for transitions to the Rydberg p-complex singlet states is presented and selection rules in terms of symmetry species of energy states are established. Finally, applications to HpO and DpO are given.