4 resultados para INHIBITS HYPERALGESIA

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mermithid nematodes (Nematoda: Mermithidae) parasitize larval, pupal and adult black flies (Diptera: Simuliidae), oftentimes resulting in partial or complete host feminization. This study was designed to characterize parasite-host seasonal variation and to estabUsh the developmental life stage at which feminization is initiated. Data indicate that the total adult population of black flies collected from Algonquin Provincial Park throughout the spring of 2004 was comprised of 31.8% female, 67.8% male and 0.4% intersex individuals. Of the total population, 0.6% was infected by mermithid nematodes (69.0% female, 3.5% male and 27.6% intersex). Seasonal infection trends established over a 12-month period revealed that black flies with different life histories host the same mermithid subfamilies, while black flies with similar life histories host mermithids from different subfamilies. If a simuliid species simultaneously hosts two mermithid species, these parasites are from different subfamilies. Molecular mermithid identification revealed two mermithid subfamilies, Me.somermithinae and Gastromermithinae, present in the simuliid hosts. Mermithid colour variation was not found to be a reliable species indicator. The developmental stage at which feminization is initiated was determined by examining gonad morphology and meiotic chromosomal condition. Results indicate that mermithid-infected black flies exhibit feminization prior to larval histoblast formation. Larvae can be morphologically male (testes present) or female (ovaries present), with morphological males exhibiting either male (achiasmate) or female (chiasmate) meiotic chromosomes; morphological females were only genetically female. Additionally, mermithid infection inhibits simuliid gonad development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the environmental factors that can affect food intake is the extent of dietary variety available in the environment. Numerous studies have demonstrated that variety in a meal can increase the amount of food consumed in humans, rats, and other species. A physiological mechanism that has been demonstrated to affect food intake is the gut peptide cholecystokinin (CCK) which is released from the upper small intestine during the ingestion of food. Peripherally administered CCK has a robust inhibitory effect on the intake of a single-food meal. Thus, dietary variety and CCK both affect meal size, with dietary variety increasing intake and CCK decreasing intake. This raises the question ofhow dietary variety and CCK might interact to affect meal size. Previous studies of CCK's effects have focused on situations in which only one food was available for consumption. However, in an animal's natural environment it would frequently occur that the animal would come across a number of foods either simultaneously or in quick succession, thus providing the animal access to a variety of foods during a meal. Accordingly, the effect ofCCK on food intake in single-food and multiple-food meals was examined. It was found that food intake was greater in multiple-food than in single-food meals provided that foods in the multiplefood meal were presented either simultaneously or in increasing order of preference. When foods in the multiple-food meal were presented in decreasing order of preference, intake was similar to that observed in single-food meals. In addition, it was found that CCK inhibited food intake in a dose-dependent manner, and that its effects on food intake were similar regardless of meal type. Therefore, the inhibitory effects ofCCK were not diminished when a variety of foods were available for consumption. Furthermore, the finding that CCK did not differentially affect the intake of the two types of meals does not provide support for the recent-foods hypothesis which postulates that CCK decreases food intake by reducing the palatability of only recently consumed foods. However, it is consistent with the all-foods hypothesis, which predicts that CCK reduces food intake by decreasing the palatability of all foods. The 600 ng/kg dose of the CCK^-antagonist lorglumide significantly antagonized the inhibitory effect of exogenous CCK on food intake, and the magnitude of this effect was similar for both types of meal. These results suggest that exogenous CCK inhibits food intake through the activation ofCCK^ receptors. However, when administered by itself, the 600^ig/kg dose of lorglumide did not increase food intake in either single-food or multiple-food meals, suggesting that peripheral endogenous CCK may not play a major role in the control of food intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resveratrol, a polyphenol found in red wine, has been reported to have antithrombotic, antiatherogenic, and anticancer properties both in vitro and III VIVO. However, possible antidiabetic properties of resveratrol have not been examined. The objective of this study was to investigate the direct effects of resveratrol on basal and insulin-stimulated glucose uptake and to elucidate its mechanism of action in skeletal muscle cells. In addition, the effects of resveratrol on basal and insulin- stimulated amino acid transport and mitogenesis were also examined. Fully differentiated L6 rat skeletal muscle cells were incubated with resveratrol concentrations ranging from 1 to 250 IlM for 15 to 120 min. Maximum stimulation, 201 ± 8.90% of untreated control, (p<0.001), of2eH] deoxy- D- glucose (2DG) uptake was seen with 100 IlM resveratrol after 120 min. Acute, 30 min, exposure of the cells to 100 nM insulin stimulated 2DG uptake to 226 ± 12.52% of untreated control (p<0.001). This appears to be a specific property of resveratrol that is not shared by structurally similar antioxidants such as quercetin and rutin, both of which did not have any stimulatory effect. Resveratrol increased the response of the cells to submaximal insulin concentrations but did not alter the maximum insulin response. Resveratrol action did not require insulin and was not blocked by the protein synthesis inhibitor cycloheximide. L Y294002 and wortmannin, inhibitors of PI3K, abolished both insulin and resveratrolstimulated glucose uptake while phosphorylation of AktlPKB, ERK1I2, JNK1I2, and p38 MAPK were not increased by resveratrol. Resveratrol did not stimulate GLUT4 transporter translocation in GLUT4cmyc overexpressing cells, in contrast to the significant translocation observed with insulin. Furthermore, resveratrol- stimulated glucose transport was not blocked by the presence of the protein kinase C (PKC) inhibitors BIMI and G06983. Despite that, resveratrol- induced glucose transport required an intact actin network, similar to insulin. In contrast to the stimulatory effect seen with resveratrol for glucose transport, e4C]methylaminoisobutyric acid (MeAIB) transport was inhibited. Significant reduction of MeAIB uptake was seen only with 100uM resveratrol (74.2 ± 6.55% of untreated control, p<0.05), which appeared to be maximum. In parallel experiments, insulin (100 nM, 30 min) increased MeAIB transport by 147 ± 5.77% (p<0.00l) compared to untreated control. In addition, resveratrol (100 JlM, 120 min) completely abolished insulin- stimulated amino acid transport (103 ± 7.35% of untreated control,p>0.05). Resveratrol also inhibited cell proliferation in L6 myoblasts with maximal inhibition of eH]thymidine incorporation observed with resveratrol at 50 J.LM after 24 hours (8 ± 1.59% of untreated control, pinhibits both basal and insulin- stimulated amino acid transport and mitogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vertebrates, signaling by retinoic acid (RA) is known to play an important role in embryonic development, as well as organ homeostasis in the adult. In organisms such as adult axolotls and newts, RA is also important for regeneration of the CNS, limb, tail, and many other organ systems. RA mediates many of its effects in development and regeneration through nuclear receptors, known as retinoic acid receptors (RARs) and retinoid X receptors (RXRs). This study provides evidence for an important role of the RA receptor, RAR~2, in ,( '. regeneration ofthe spinal cord and tail of the adult newt. It has previously been proposed that the ability of the nervous system to regenerate might depend on the presence or absence of this RAR~2 isoform. Here, I show for the very first time, that the regenerating spinal cord of the adult newt expresses this ~2 receptor isoform, and inhibition of retinoid signaling through this specific receptor with a selective antagonist inhibits tail and spinal cord regeneration. This provides the first evidence for a role of this receptor in this process. Another species capable of CNS ~~generation in the adult is the invertebrate, " Lymnaea stagnalis. Although RA has been detected in a small number of invertebrates (including Lymnaea), the existence and functional roles of the retinoid receptors in most invertebrate non-chordates, have not been previously studied. It has been widely believed, however, that invertebrate non-chordates only possess the RXR class of retinoid receptors, but not the RARs. In this study, a full-length RXR cDNA has been cloned, which was the first retinoid receptor to be discovered in Lymnaea. I then went on to clone the very first full-length RAR eDNA from any non-chordate, invertebrate species. The functional role of these receptors was examined, and it was shown that normal molluscan development was altered, to varying degrees, by the presence of various RXR and RAR agonists or antagonists. The resulting disruptions in embryogenesis ranged from eye and shell defects, to complete lysis of the early embryo. These studies strongly suggest an important role for both the RXR and RAR in non-chordate development. The molluscan RXR and RAR were also shown to be expressed in the adult, nonregenerating eNS, as well as in individual motor neurons regenerating in culture. More specifically, their expression displayed a non-nuclear distfibution, suggesting a possible non-genomic role for these 'nuclear' receptors. It was shown that immunoreactivity for the RXR was present in almost all regenerating growth cones, and (together with N. Farrar) it was shown that this RXR played a novel, non-genomic role in mediating growth cone turning toward retinoic acid. Immunoreactivity for the novel invertebrate RAR was also found in the regenerating growth cones, but future work will be required to determine its functional role in nerve cell regeneration. Taken together, these data provide evidence for the importance of these novel '. retinoid receptors in development and regeneration, particularly in the adult nervous system, and the conservation of their effects in mediating RA signaling from invertebrates to vertebrates.