7 resultados para IMPROVES MUSCULAR PERFORMANCE
em Brock University, Canada
Resumo:
Emerging markets have received wide attention from investors around the globe because of their return potential and risk diversification. This research examines the selection and timing performance of Canadian mutual funds which invest in fixed-income and equity securities in emerging markets. We use (un)conditional two- and five-factor benchmark models that accommodate the dynamics of returns in emerging markets. We also adopt the cross-sectional bootstrap methodology to distinguish between ‘skill’ and ‘luck’ for individual funds. All the tests are conducted using a comprehensive data set of bond and equity emerging funds over the period of 1989-2011. The risk-adjusted measures of performance are estimated using the least squares method with the Newey-West adjustment for standard errors that are robust to conditional heteroskedasticity and autocorrelation. The performance statistics of the emerging funds before (after) management-related costs are insignificantly positive (significantly negative). They are sensitive to the chosen benchmark model and conditional information improves selection performance. The timing statistics are largely insignificant throughout the sample period and are not sensitive to the benchmark model. Evidence of timing and selecting abilities is obtained in a small number of funds which is not sensitive to the fees structure. We also find evidence that a majority of individual funds provide zero (very few provide positive) abnormal return before fees and a significantly negative return after fees. At the negative end of the tail of performance distribution, our resampling tests fail to reject the role of bad luck in the poor performance of funds and we conclude that most of them are merely ‘unlucky’.
Resumo:
ABSTRACT The myosm regulatory light chain (RLC) of type II fibres is phosphorylated by Ca2+ -calmodulin dependent myosin light chain kinase (skMLCK) during muscular activation. The purpose of this study was to explore the effect of skMLCK gene ablation on the fatigability of mouse skeletal muscles during repetitive stimulation. The absence of myosin RLC phosphorylation in skMLCK knockout muscles attenuated contractile performance without a significant metabolic cost. Twitch force was potentiated to a greater extent in wildtype muscles until peak force had diminished to ~60% of baseline (37.2 ± 0.05% vs. 14.3 ± 0.02%). Despite no difference in peak force (Po) and shortening velocity (Vo), rate of force development (+dP/dt) and shortening-induced deactivation (SID) were almost two-fold greater in WT muscles. The present results demonstrate that myosin RLC phosphorylation may improve contractile performance during fatigue; providing a contractile advantage to working muscles and protecting against progressive fatigue.
Resumo:
Within sport, a tremendous amount of effort is committed to the on-the-field performance of athletes and coaches, neglecting the off-the-field performance and development of sport managers. This study examines the impact of human resource training on the performance of five Canadian national sport organizations (NSO) and their managers (N=22). Data were collected on three outcome variables (learning, individual performance, organizational performance) and three mediating variables (motivation to transfer, training design, organizational climate) at three time measures (pre-training, post-training1, post-training2). Results indicate that training improves the learning and individual performance of sport managers, as well as the organizational performance of NSOs. Varying relationships were found at each of the three time measures, demonstrating that a progression to training-related performance change exists, while providing support for three levels of analysis (individual, organizational, systemic). Implications and future research directions are discussed and highlight the need for on-going training opportunities for Canadian sport managers.
Resumo:
This study attempted to manipulate self-presentational efficacy to examine the effect on social anxiety, social physique anxiety, drive for muscularity, and maximal strength performance during a one-repetition maximum (1-RM) chest press and leg press test. Ninety-nine college men with a minimum of six months of previous weight training experience were randomly assigned to complete a 1-RM protocol with either a muscular male trainer described as an expert or a lean male trainer described as a novice. Participants completed measures of self-presentation and body image prior to meeting their respective trainer, and following the completion of the 1-RM tests. Although the self-presentational efficacy manipulation was not successful, the trainers were perceived significantly differently on musculature and expertise. The group with the muscular, expert trainer reported higher social anxiety and attained higher 1-RM scores for the chest and leg press. Thus, trainer characteristics can affect strength performance and self-presentational concerns in this population.
Resumo:
The human neuromuscular system is susceptible to changes within the thermal environment. Cold extrinsic temperatures can significantly reduce muscle and nervous system function and communication, which can have consequences for motor performance. A repeated measures design protocol exposed participants to a 12°C cold water immersion (CWI) up to the ankle, knee, and hip to determine the effect that reduced skin and muscle temperature had on balance and strength task execution. Although a linear reduction in the ability to perform balance tasks was seen from the control condition through to the hip CWI, results from the study indicated a significant reduction in dynamic balance (Star Excursion Balance Test reach distance) performance from only the hip CWI (P<0.05). This reduced performance could have been due to an increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced isokinetic muscular strength. Reduced physical performance due to cold temperature could negatively impact outdoor recreational athletics.
Resumo:
Objective: To identify the association of low physical activity (PA) participation in children with various motor performances (MP) and to establish the impact of social competence (SC). Methods: Sixth grade children from PHAST study at Brock University (n=1958; 50.53% males) had MP test results from Bruininks-Oseretsky Test of Motor Proficiency, Participation Questionnaire (PQ) used for PA and Harter Social Competence Scale for self-perceived SC. Comparative tests, multiple and logistic regressions were performed. Results: Significant differences in PQ measures in MP quartiles and SCs. MP and SC are independent predictors of PA (p<.05) except with SES on free play activity, making MP not significant. Lower MP increased the odds of low total PA and organized sport participation but not for free play activities (OR~1). Higher SC reduced the risk of low participation in all PA measures. Conclusions: SC improves PA participation, including free play and organized sports, despite the child’s MP.
Resumo:
Most research on the effects of endurance training has focused on endurance training's health-related benefits and metabolic effects in both children and adults. The purpose of this study was to examine the neuromuscular effects of endurance training and to investigate whether they differ in children (9.0-12.9 years) and adults (18.4-35.6 years). Maximal isometric torque, rate of torque development (RTD), rate of muscle activation (Q30), electromechanical delay (EMD), and time to peak torque and peak RTD were determined by isokinetic dynamometry and surface electromyography (EMG) in elbow and knee flexion and extension. The subjects were 12 endurance-trained and 16 untrained boys, and 15 endurance-trained and 20 untrained men. The adults displayed consistently higher peak torque, RTD, and Q30, in both absolute and normalized values, whereas the boys had longer EMD (64.7+/-17.1 vs. 56.6+/-15.4 ms) and time to peak RTD (98.5+/-32.1 vs. 80.4+/-15.0 ms for boys and men, respectively). Q30, normalized for peak EMG amplitude, was the only observed training effect (1.95+/-1.16 vs. 1.10+/-0.67 ms for trained and untrained men, respectively). This effect could not be shown in the boys. The findings show normalized muscle strength and rate of activation to be lower in children compared with adults, regardless of training status. Because the observed higher Q30 values were not matched by corresponding higher performance measures in the trained men, the functional and discriminatory significance of Q30 remains unclear. Endurance training does not appear to affect muscle strength or rate of force development in either men or boys.