5 resultados para Hydrothermal Alteration

em Brock University, Canada


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The formation of the Sar Cheshmeh porphyry Cu-Mo deposit is related to the culmination of calc-alkaline igneous activity in the Kerman region. The deposit comprises a suite of Late Cenozoic intrusive sub-volcanic and extrusive rocks emplaced into a folded series of Eocene andesitic lavas and pyroclastic sediments. The earliest stage of magmatism was emplacement of a large granodiorite stock about 29 m.y.b.p. This was followed by intrusion of two separate porphyritic bodies at 15 (Sar Cheshrneh porphyry) and 12 m.y.b.p. (Late porphyry) and a series of sub-volcanic dikes between 12 and 9 m.y.b.p. Magmatic activity terminated with multi-phase extrusion of a Pelean dacitic dome complex between 10 and 2.8 m.y.b.p. The country rocks and the earlier porphyritic intrusions are pervasively altered to biotite-rich potassium silicate (metasomatic and hydrothermal) sericite-clay, phyllic and chlorite-clay, argillic assemblages. These grade outwards to an extensive propylitic zone. Within the ore body, the later intra-. and post-mineral dikes only reach the propylitic grade. At least three different sets of quartz veins are present, including a sericite-chlorite-quartz set which locally retrogrades pervasive secondary biotite to sericite. In the hypogene zone, metasomatic and hydrothermal alteration is related to all stages of magmatism but copper mineralization and veining are restricted to a period of 15 to 9 m.y.b.p.related to the early intrusive phases. The copper mineralization and silicate alteration do not fit a simple annular ring model but have been greatly modified by, 1. The existence of an ititial, outer ring, of metasomatic alteration overprinted by an inner.ring of hydrothermal alteration and, 2. later extensive dilating effects of intra- and post-mineral dikes. The hydrothermal clay mineral assemblage in the hypogene zone is illite-chlorite-kaolinite-smectite (beidellite). Preliminary studies indicate that the amount of each of these clays varies vertically and that hydrothermal zonation of clay minerals is possible. However, these minerals alter to illite-kaolinite assemblages in the supergene sulfide zone and to more kaolinite-rich assemblages in the supergene leached zone. Hydrothermal biotite breaks down readily in the supergene zone and is not well preserved in surface outcrops. The distribution of copper minerals in the supergene sulfide enrichment zone is only partly related to rock type being more dependent on topography and the availability of fractures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the thennal effects of latent heat in hydrothennal settings, an extension was made to the existing finite-element numerical modelling software, Aquarius. The latent heat algorithm was validated using a series of column models, which analysed the effects of penneability (flow rate), thennal gradient, and position along the two-phase curve (pressure). Increasing the flow rate and pressure increases displacement of the liquid-steam boundary from an initial position detennined without accounting for latent heat while increasing the thennal gradient decreases that displacement. Application to a regional scale model of a caldera-hosted hydrothennal system based on a representative suite of calderas (e.g., Yellowstone, Creede, Valles Grande) led to oscillations in the model solution. Oscillations can be reduced or eliminated by mesh refinement, which requires greater computation effort. Results indicate that latent heat should be accounted for to accurately model phase change conditions in hydrothennal settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Sand Creek Prospect is located within the eastern exposed margin of the Coast Plutonic Complex. The occurrence is a plug and dyke porphyry molybdenum deposit. The rock types, listed in decreasing age: 1) metamorphlc schists and gneisses; 2) diorite suite rocks - diorite, quartz diorite, tonalite; 3) rocks of andesitic composition; 4) granodiorites, coarse porphyritic granodiorite, quartzfeldspar porphyry, feldspar porphyry; and 5) lamprophyre. Hydrothermal alteration is known to have resulted from emplacement of the hornblende-feldspar porphyry through to the quartz-feldspar porphyry. Molybdenum mineralization is chiefly associated with the quartz-feldspar porphyry. Ore mineralogy is dominated by pyrite with subordinate molybdenite, chalcopyrite, covelline, sphalerite, galena, scheelite, cassiterite and wolframite. Molybdenite exhibits a textural gradation outward from the quartz-feldspar porphyry. That is, disseminated rosettes and rosettes in quartz veins to fine-grained molybdenite in quartz veins and potassic altered fractures to fine-grained molybdenite paint or 6mears in the peripheral zones. The quartz-feldspar porphyry dykes were emplaced in an inhomogeneous stress field. The trend of dykes, faults and shear zones is 0^1° to 063° and dips between 58° NW and 86* SE. Joint Pole distribution reflects this fault orientation. These late deformatior maxima are probably superimposed upon annuli representing diapiric emplacement of the plutons. A model of emplacement involving two magmatic pulses is given in the following sequence: Diorite pulse (i) dioritequartz diorite, (ii) tonalites; granodiorite pulse (iii) hornblende-fildspar microporphyry, hornblende/biotite porphyry, (iv) coarse grained granodiorite, (v) quartz-feldspar porphyry, (vi) feldspar porphyry, and (vii) lamprophyre. The combination of plutonic and coarse porphyritic textures, extensive propylitic overprinting of potassic alteration assemblages suggests that the. prospect represents the lower reaches of a porphyry system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Preexisting fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial ichnofossils in volcanic rocks provide a significant record of subsurface microbes and potentially extraterrestrial biosignatures. Here, the textures, mineralogy, and geochemistry of two continental basaltic hydrovolcanic deposits - Reed Rocks and Black Hills - in the Fort Rock Volcanic Field (FRVF) are investigated. Methods include petrographic microscopy, micro and powder X-ray diffraction, SEM/BSE/EDF imaging, energy dispersive spectroscopy, stable isotopes, and X-ray fluorescence. Petrographic analysis revealed granular and tubular textures with biogenic morphologies that include terminal enlargements, septate divisions, branching forms, spiral filaments, and ovoid bodies resembling endolithic microborings described in ocean basalts. They display evidence of behaviour and a geologic context expressing their relative age and syngenicity. Differences in abiotic alteration and the abundance/morphotype assemblage of putative microborings between the sites indicate that water/rock ratio, fluid composition and flux, temperature and secondary phase formation are influences on microboring formation. This study is the first report of reputed endolithic microborings in basalts erupted in a continental lacustrine setting.