2 resultados para Hydrogen reduction

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5a-reductase of Penicillium decumbens ATCC 10436 was used as a model for the mammalian enzyme to investigate the mechanism of reduction of testosterone to 5adihydrotestosterone . The purpose of this study was to search for specific 5a-reductase inhibitors which antagonize prostate cancer . In a whole-cell biotransformation mode, this organism reduced testosterone (1) to 5a-dihydrosteroids (8) and 5aandrostane- 3, 17-dione (9) in yields of 28% and 37% respectively. Control experiments have shown that 5aandrostane- 3, 17-dione (9) can be produced from the corresponding alcohol (8) in a subsequent reaction separate from that catalysed by the 5a-reductase enzyme . Androst-4- ene-3, 17-dione (2) is reduced to give only (9) with a recovery of 80% The stereochemistry of the reduction was determined by 500 MHz ^H NMR analysis of the products resulting from the deuterium labelled substrates. The results were obtained by an analysis of the NOE difference spectra, double-quantum filtered phase sensitive COSY 2-D spectra, and ^^c-Ir 2-D shift correlation spectra of deuterium labelled products. According to the unambiguous assignment of the signals due to H-4a and H-4Ii in 5a-dihydro steroids, the NMR data show clearly that addition of hydrogen to the 4{5)K bond has occurred in a trans manner at positions 413 and 5a. To Study the reduction mechanism of this enzyme, several substrates were prepared as following; 3-methyleneandrost-4-en- 17fi-ol(3), androst-4-en-17i5-ol(5) , androst-4-en-3ii, 17fi-diol (6) and 4, 5ii-epoxyandrostane-3, 17-dione (7) . Results suggest that this enzyme system requires an oxygen atom at the 3-position of the steroid in order to bind the substrate. Furthermore, the mechanism of this 5a-reductase may proceed via direct addition of hydrogen at the 4,5 position without involvement of a carbonyl group as an intermediate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has previously been recognized that the major biochemical toxicity induced by sulphide is due to an inhibition of cytochrome ~ oxidase. Inhibition of this enzyme occurs at 30°C and pH 7.4 with a Ki of approximately 0.2 ~M, and a kon of 104 M-1 s-l, under catalytic conditions. However, the equimo1ar mixture of sulphide and the enzyme shows identical catalytic behaviour to that of the native enzyme. This cannot readily be attributed to rapid dissociation of sulphide, as both spectroscopic and plot analysis indicate the koff value is low. The addition of stoichiometric sulphide to the resting oxidized enzyme gives rise to the appearance of a low-spin ferric-type spectrum not identical with that seen on the addition of excess sulphide to the enzyme aerobically. Sulphide added to the enzyme anaerobically gives rise to another low-spin, probably largely ferric, form which upon admission of oxygen is then converted into a 607 nm species closely resembling Compound C. The 607 nm form is probably the precursor of oxyferricytochrome aa3. The addition of successive a1iquots of Na2S solution to the enzyme induces initial uptake of approximately 3 moles of oxygen per mole of the enzyme. Thus, it is concluded that: 1. the initial product of sulphide-cytochrome c oxidase interaction is not an inhibited form of the enzyme, but the low-spin (oxyferri) ~3+~+ species; 2. a subsequent step in which sulphide reduces cytochrome ~ occurs; 3. the final inhibitory step, in which a further molecule of sulphide binds to the cytochrome ~ iron centre in the cytochrome ~2+~+ species, gives the cytochrome a2+~+-H2S form which is a half-reduced fully inhibited species;4. a 607 run form of the enzyme is produced which may be converted into a catalytically active low-spin (oxyferri) state; and therefore 5. liganded sulphide may be able to reduce the cytochrome 33 -Cu centre without securing the prior reduction of the cytochrome a_ haem group or the Cud centre associated with it.