3 resultados para Host Range
em Brock University, Canada
Resumo:
To study emerging diseases, I employed a model pathogen-host system involving infections of insect larvae with the opportunistic fungus Aspergillus flavus, providing insight into three mechanisms ofpathogen evolution namely de novo mutation, genome decay, and virulence factoracquisition In Chapter 2 as a foundational experiment, A. flavus was serially propagated through insects to study the evolution of an opportunistic pathogen during repeated exposure to a single host. While A. flavus displayed de novo phenotypic alterations, namely decreased saprobic capacity, analysis of genotypic variation in Chapter 3 signified a host-imposed bottleneck on the pathogen population, emphasizing the host's role in shaping pathogen population structure. Described in Chapter 4, the serial passage scheme enabled the isolation of an A. flavus cysteine/methionine auxotroph with characteristics reminiscent of an obligate insect pathogen, suggesting that lost biosynthetic capacity may restrict host range based on nutrient availability and provide selection pressure for further evolution. As outlined in Chapter 6, cysteine/methionine auxotrophy had the pleiotrophic effect of increasing virulence factor production, affording the slow-growing auxotroph with a modified pathogenic strategy such that virulence was not reduced. Moreover in Chapter 7, transformation with a virulence factor from a facultative insect pathogen failed to increase virulence, demonstrating the necessity of an appropriate genetic background for virulence factor acquisition to instigate pathogen evolution.
Resumo:
Fire blight is an economically important disease of apples and pears that is caused by the
bacterium Erwinia amylovora. Control of the disease depends on limiting primaly blosson1
infection in the spring, and rapidly removing infected tissue. The possibility of using phages to
control E.amylovora populations has been suggested, but previous studies have. failed to show
high treatment efficacies. This work describes the development of a phage-based biopesticide
that controls E. amylovora populations under field conditions, and significantly reduces the
incidence of fire blight.
This work reports the first use ofPantoea agglomerans, a non-pathogenic relative ofE.
amylovora, as a carrier for E. amylovora.phages. Its role is to support a replicating population of
these phages on blossom surfaces during the period when the flowers are most susceptible to
infection. Seven phages and one carrier isolate were selected for field trials from existing
collections of 56 E. amylovora phages and 249 epiphytic orchard bacteria. Selection of the .
/'
phages and carrier was based on characteristics relevant to the production and field perfonnance
of a biopesticide: host range, genetic diversity, growth under the conditions of large-scale
production, and the ability to prevent E. amylovora from infecting pear blossoms. In planta
assays showed that both the phages and the carrier make significant contributions to reducirig the
development of fire blight symptoms in pear blossoms.
Field-scale phage production and purification methods were developed based on the
growth characteristics of the phages and bacteria in liquid culture, and on the survival of phages
in various liquid media.
Six of twelve phage-carrier biopesticide treatments caused statistically signiflcant reductions in disease incidence during orchard trials. Multiplex real-time PCR was used to
simultaneously monitor the phage, carrier, and pathogen populations over the course of selected
treatments. In all cases. the observed population dynamics of the biocontrol agents and the
pathogen were consistent with the success or failure of each treatment to control disease
incidence. In treatments exhibiting a significantly reduced incidel1ce of fire blight, the average
blossom population ofE.amylovora had been reduced to pre-experiment epiphytic levels. In
successful treatments the phages grew on the P. agglomerans carrier for 2 to 3 d after treatment
application. The phages then grew preferentially on the pathogen, once it was introduced into this
blossom ecosystem. The efficacy of the successful phage-based treatnlents was statistically
similar to that of streptomycin, which is the most effective bactericide currently available for fire
blight prevention.
The in planta behaviour ofE. amylovora was compared to that ofErwinia pyrifoliae, a
closely related species that causes fire blight-like synlptoms on pears in southeast Asia. Duplex
real-time PCR was used to monitor the population dynamics of both species on single blossonls.
E. amylovora exhibited a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae.
The genome ofErwinia phage
Resumo:
Extracellular, non-flagellar appendages, termed fimbriae are widespread among fungi. Fungal fimbriae range in diameter from 6-10 nm and exhibit lengths of up to 30 ~m. Fungal fimbriae have been implicated in several functions: adhesion, conjugation and flocculation. A possible role of fimbriae in host-mycoparasite interactions was the focus of this study . Using electron microscopy, fimbriae were observed on the surfaces of Mortiere lla cande labrum, Mortie re lla pusi lla and Phascolomyces articulosus with diameter means of 9.1±0.4 nm, 9.4±0.5 nm and 8.6±0.6 nm, respectively, and lengths of up to 25 ~m. Fimbriae were not observed on the surface of the mycoparasite, Piptocephalis virginiana. Polyclonal antiserum (AU) prepared against the fimbrial protein of Ustilago violacea cross-reacted with 60 and 57 kDa M. candelabrum proteins. In addition, AU cross-reacted with 64 kDa proteins from both M. pusilla and P. articulosus. The proteins that cross-reacted with AU were electroeluted from polyacrylamide gels and were shown to subsequently form fibrils. The diameter means for the electroeluted fibrils were: for M. candelabrum 9.7±0.3 nm, M. pusilla 8.4±0.6 nm and P articulosus 9.2±0.5 nm. Finally, to ascertain the role of fimbriae in host-mycoparasite interactions, AU was incubated with P. virginiana and M. pusilla (mycoparasite/susceptible host) and with P. virginiana and P . articulosus (mycoparasite/ resistant host). It was observed that AU decreased significantly the level of contact between P. virginiana and M. pusilla and between P. virginiana and P. articulosus in comparison to prelmmune serum treatments. Thus, it was proposed that fimbriae might play recognition and attachment roles in early events of mycoparasitism.