5 resultados para Hip abductor muscles

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The puqjose of this study was to examine the manner in which an inviting approach to a preoperative teaching and learning educational experience influenced the perception and subsequent recovery of clients who were awaiting total hip and total knee replacement surgery. An in-depth review of the internal and external factors that shape client perceptions was undertaken in this study. In addition, this study also explored whether or not the Prehab Program was preparing clients physically, socially, and psychologically for surgery. Data for this qualitative case study research were collected through preoperative interviews with 4 participants awaiting total hip replacement surgery and 1 participant awaiting total knee replacement surgery. Four postoperative interviews were conducted with the participants who had received total hip replacement surgery. The occupational therapist and physical therapist who were the coleaders of the Prehab Program at the time of this study were also interviewed. The results of this study suggest that while individuals may receive similar educational experiences, their perceptions of the manner in which they benefited from these experiences varied. This is illustrated in the research findings, which concluded that while clients benefited physically from the inviting approach used during the practical teaching session, not all clients perceived the psychological benefits of this practice session, especially clients with preexisting high levels of anxiety. In addition to increasing the understanding of the internal as well as external factors that influence the perceptions of clients, this study has also served as an opportunity for reflection on practice for the Prehab therapists and other healthcare educators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My thesis advocates for critically-conscious hip-hop in classrooms to promote student engagement and culturally relevant pedagogical practices. This proposed approach to educating youth offsets the harmful effects of a normalized curriculum that limits students’ creativity and discounts their experiences as lifelong learners. My thesis gathers data from research literature on hip-hop and education, critically-conscious hip-hop lyrics, and also includes my own hip-hop muse to illustrate the positive tenets of critically-conscious hip-hop. The research literature in my thesis is gathered from multiple studies within North American high schools. My hip-hop muse interrelates with critically-conscious hip-hop lyrics because they both address contemporary issues through social commentary and critical awareness. The element of social commentary in my hip-hop muse is displayed through short poems and verses that outline my experiences in a normalized schooling environment. Throughout my thesis, I uncover the causes of student disengagement in classrooms, the ways in which critically-conscious hip-hop music serves as a tool for reengaging youth, and the approaches that must be taken in order to adequately integrate hip-hop into today’s classrooms. My thesis is important within the context of Canadian classrooms because it acts as an agent for social change and cultural relevance through a critical lens. The purpose of this approach, then, is to demonstrate an understanding of the complexity of our society and schooling system through social critique and proposals for change. More importantly, my thesis is grounded in equity; in which critically-conscious hip-hop serves as a bridge for students’ experiences, interests, and independent identities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10(-5) and 10(-4) M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10(-5) M OA increased synaptically driven contractions by ≈ 1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory light chain (RLC) phosphorylation in fast twitch muscle is catalyzed by skeletal myosin light chain kinase (skMLCK), a reaction known to increase muscle force, work, and power. The purpose of this study was to explore the contribution of RLC phosphorylation on the power of mouse fast muscle during high frequency (100 Hz) concentric contractions. To determine peak power shortening ramps (1.05 to 0.90 Lo) were applied to Wildtype (WT) and skMLCK knockout (skMLCK-/-) EDL muscles at a range of shortening velocities between 0.05-0.65 of maximal shortening velocity (Vmax), before and after a conditioning stimulus (CS). As a result, mean power was increased to 1.28 ± 0.05 and 1.11 ± .05 of pre-CS values, when collapsed for shortening velocity in WT and skMLCK-/-, respectively (n = 10). In addition, fitting each data set to a second order polynomial revealed that WT mice had significantly higher peak power output (27.67 ± 1.12 W/ kg-1) than skMLCK-/- (25.97 ± 1.02 W/ kg-1), (p < .05). No significant differences in optimal velocity for peak power were found between conditions and genotypes (p > .05). Analysis with Urea Glycerol PAGE determined that RLC phosphate content had been elevated in WT muscles from 8 to 63 % while minimal changes were observed in skMLCK-/- muscles: 3 and 8 %, respectively. Therefore, the lack of stimulation induced increase in RLC phosphate content resulted in a ~40 % smaller enhancement of mean power in skMLCK-/-. The increase in power output in WT mice suggests that RLC phosphorylation is a major potentiating component required for achieving peak muscle performance during brief high frequency concentric contractions.