1 resultado para High-throughput
em Brock University, Canada
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- Aberdeen University (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (29)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (16)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (35)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (68)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (4)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (72)
- Brock University, Canada (1)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (62)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (12)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (32)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (14)
- DigitalCommons@The Texas Medical Center (21)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (23)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Glasgow Theses Service (5)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Institutional Repository of Leibniz University Hannover (3)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (29)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (11)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório da Produção Científica e Intelectual da Unicamp (33)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (32)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (13)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (18)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (11)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (145)
- Université de Montréal (2)
- Université de Montréal, Canada (25)
- Université Laval Mémoires et thèses électroniques (2)
- University of Queensland eSpace - Australia (40)
- University of Washington (7)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Understanding the relationship between genetic diseases and the genes associated with them is an important problem regarding human health. The vast amount of data created from a large number of high-throughput experiments performed in the last few years has resulted in an unprecedented growth in computational methods to tackle the disease gene association problem. Nowadays, it is clear that a genetic disease is not a consequence of a defect in a single gene. Instead, the disease phenotype is a reflection of various genetic components interacting in a complex network. In fact, genetic diseases, like any other phenotype, occur as a result of various genes working in sync with each other in a single or several biological module(s). Using a genetic algorithm, our method tries to evolve communities containing the set of potential disease genes likely to be involved in a given genetic disease. Having a set of known disease genes, we first obtain a protein-protein interaction (PPI) network containing all the known disease genes. All the other genes inside the procured PPI network are then considered as candidate disease genes as they lie in the vicinity of the known disease genes in the network. Our method attempts to find communities of potential disease genes strongly working with one another and with the set of known disease genes. As a proof of concept, we tested our approach on 16 breast cancer genes and 15 Parkinson's Disease genes. We obtained comparable or better results than CIPHER, ENDEAVOUR and GPEC, three of the most reliable and frequently used disease-gene ranking frameworks.