14 resultados para Heuristic optimization
em Brock University, Canada
Resumo:
There are a considerable number of programs and agencies that count on the existence of a unique relationship between nature and human development. In addition, there are significant bodies of literature dedicated to understanding developmentally focused nature-based experiences. This research project was designed to flirther the understanding of this phenomenon. Consequently, the purpose of this research endeavour was to discover the essence ofthe intersection ofpersonal transformation and nature-based leisure, culminating in a rich and detailed account of this otherwise tacit phenomenon. As such, this research built on the assumption of this beneficial intersection of nature and personal transformation and contributes to the understanding ofhow this context is supporting or generating of selfactualization and positive development. Heuristic methods were employed because heuristics is concerned with the quality and essence of an experience, not causal relationships (Moustakas, 1990). Heuristic inquiry begins with the primary researcher and her personal experience and knowledge of the phenomenon. This study also involved four other coresearchers who had also experienced this phenomenon intensely. Co-researchers were found through purposeful and snowball sampling. Rich narrative descriptions of their experiences were gathered through in-depth, semi-structured interviews, and artifact elicitation was employed as a means to get at co-researchers' tacit knowledge. Each coresearcher was interviewed twice (the first interview focused on personal transformation, the second on nature) for approximately four and a half hours in total. Transcripts were read repeatedly to discern patterns that emerged from the study of the narratives and were coded accordingly. Individual narratives were consolidated to create a composite narrative of the experience. Finally, a creative synthesis was developed to represent the essence of this tacit experience. In conclusion the essence of the intersection of nature-based leisure and personal transformation was found to lie in the convergence of the lived experience of authenticity. The physical environment of nature was perceived and experienced to be a space and context of authenticity, leisure experiences were experienced as an engagement of authenticity, and individuals themselves encountered a true or authentic self that emanated from within. The implications of these findings are many, offering suggestions, considerations and implications from reconsidered approaches to environmental education to support for selfdirected human development.
Resumo:
Optimization of wave functions in quantum Monte Carlo is a difficult task because the statistical uncertainty inherent to the technique makes the absolute determination of the global minimum difficult. To optimize these wave functions we generate a large number of possible minima using many independently generated Monte Carlo ensembles and perform a conjugate gradient optimization. Then we construct histograms of the resulting nominally optimal parameter sets and "filter" them to identify which parameter sets "go together" to generate a local minimum. We follow with correlated-sampling verification runs to find the global minimum. We illustrate this technique for variance and variational energy optimization for a variety of wave functions for small systellls. For such optimized wave functions we calculate the variational energy and variance as well as various non-differential properties. The optimizations are either on par with or superior to determinations in the literature. Furthermore, we show that this technique is sufficiently robust that for molecules one may determine the optimal geometry at tIle same time as one optimizes the variational energy.
Resumo:
We developed the concept of split-'t to deal with the large molecules (in terms of the number of electrons and nuclear charge Z). This naturally leads to partitioning the local energy into components due to each electron shell. The minimization of the variation of the valence shell local energy is used to optimize a simple two parameter CuH wave function. Molecular properties (spectroscopic constants and the dipole moment) are calculated for the optimized and nearly optimized wave functions using the Variational Quantum Monte Carlo method. Our best results are comparable to those from the single and double configuration interaction (SDCI) method.
Resumo:
Methods for both partial and full optimization of wavefunction parameters are explored, and these are applied to the LiH molecule. A partial optimization can be easily performed with little difficulty. But to perform a full optimization we must avoid a wrong minimum, and deal with linear-dependency, time step-dependency and ensemble-dependency problems. Five basis sets are examined. The optimized wavefunction with a 3-function set gives a variational energy of -7.998 + 0.005 a.u., which is comparable to that (-7.990 + 0.003) 1 of Reynold's unoptimized \fin ( a double-~ set of eight functions). The optimized wavefunction with a double~ plus 3dz2 set gives ari energy of -8.052 + 0.003 a.u., which is comparable with the fixed-node energy (-8.059 + 0.004)1 of the \fin. The optimized double-~ function itself gives an energy of -8.049 + 0.002 a.u. Each number above was obtained on a Bourrghs 7900 mainframe computer with 14 -15 hrs CPU time.
Resumo:
The Two-Connected Network with Bounded Ring (2CNBR) problem is a network design problem addressing the connection of servers to create a survivable network with limited redirections in the event of failures. Particle Swarm Optimization (PSO) is a stochastic population-based optimization technique modeled on the social behaviour of flocking birds or schooling fish. This thesis applies PSO to the 2CNBR problem. As PSO is originally designed to handle a continuous solution space, modification of the algorithm was necessary in order to adapt it for such a highly constrained discrete combinatorial optimization problem. Presented are an indirect transcription scheme for applying PSO to such discrete optimization problems and an oscillating mechanism for averting stagnation.
Resumo:
The prediction of proteins' conformation helps to understand their exhibited functions, allows for modeling and allows for the possible synthesis of the studied protein. Our research is focused on a sub-problem of protein folding known as side-chain packing. Its computational complexity has been proven to be NP-Hard. The motivation behind our study is to offer the scientific community a means to obtain faster conformation approximations for small to large proteins over currently available methods. As the size of proteins increases, current techniques become unusable due to the exponential nature of the problem. We investigated the capabilities of a hybrid genetic algorithm / simulated annealing technique to predict the low-energy conformational states of various sized proteins and to generate statistical distributions of the studied proteins' molecular ensemble for pKa predictions. Our algorithm produced errors to experimental results within .acceptable margins and offered considerable speed up depending on the protein and on the rotameric states' resolution used.
Resumo:
(A) Solid phase synthesis of oligonucleotides are well documented and are extensively studied as the demands continue to rise with the development of antisense, anti-gene, RNA interference, and aptamers. Although synthesis of RNA sequences faces many challenges, most notably the choice of the 2' -hydroxy protecting group, modified 2' -O-Cpep protected ribonucleotides were synthesized as alternitive building blocks. Altering phosphitylation procedures to incorporate 3' -N,N-diethyl phosphoramidites enhanced the overall reactivity, thus, increased the coupling efficiency without loss of integrety. Furthermore, technical optimizations of solid phase synthesis cycles were carried out to allow for successful synthesis of a homo UIO sequences with a stepwise coupling efficiency reaching 99% and a final yield of 91 %. (B) Over the past few decades, dipyrrometheneboron difluoride (BODIPY) has gained recognition as one of the most versatile fluorophores. Currently, BODIPY labeling of oligonucleotides are carried out post-synthetically and to date, there lacks a method that allows for direct incorporation of BODIPY into oligonucleotides during solid phase synthesis. Therefore, synthesis of BODIPY derived phosphoramidites will provide an alternative method in obtaining fluorescently labelled oligonucleotides. A method for the synthesis and incorporation of the BODIPY analogues into oligonucleotides by phosphoramidite chemistry-based solid phase DNA synthesis is reported here. Using this approach, BODIPY-labeled TlO homopolymer and ISIS 5132 were successfully synthesized.
Resumo:
This thesis introduces the Salmon Algorithm, a search meta-heuristic which can be used for a variety of combinatorial optimization problems. This algorithm is loosely based on the path finding behaviour of salmon swimming upstream to spawn. There are a number of tunable parameters in the algorithm, so experiments were conducted to find the optimum parameter settings for different search spaces. The algorithm was tested on one instance of the Traveling Salesman Problem and found to have superior performance to an Ant Colony Algorithm and a Genetic Algorithm. It was then tested on three coding theory problems - optimal edit codes, optimal Hamming distance codes, and optimal covering codes. The algorithm produced improvements on the best known values for five of six of the test cases using edit codes. It matched the best known results on four out of seven of the Hamming codes as well as three out of three of the covering codes. The results suggest the Salmon Algorithm is competitive with established guided random search techniques, and may be superior in some search spaces.
Resumo:
This research focuses on generating aesthetically pleasing images in virtual environments using the particle swarm optimization (PSO) algorithm. The PSO is a stochastic population based search algorithm that is inspired by the flocking behavior of birds. In this research, we implement swarms of cameras flying through a virtual world in search of an image that is aesthetically pleasing. Virtual world exploration using particle swarm optimization is considered to be a new research area and is of interest to both the scientific and artistic communities. Aesthetic rules such as rule of thirds, subject matter, colour similarity and horizon line are all analyzed together as a multi-objective problem to analyze and solve with rendered images. A new multi-objective PSO algorithm, the sum of ranks PSO, is introduced. It is empirically compared to other single-objective and multi-objective swarm algorithms. An advantage of the sum of ranks PSO is that it is useful for solving high-dimensional problems within the context of this research. Throughout many experiments, we show that our approach is capable of automatically producing images satisfying a variety of supplied aesthetic criteria.
Resumo:
The present work suggests that sentence processing requires both heuristic and algorithmic processing streams, where the heuristic processing strategy precedes the algorithmic phase. This conclusion is based on three self-paced reading experiments in which the processing of two-sentence discourses was investigated, where context sentences exhibited quantifier scope ambiguity. Experiment 1 demonstrates that such sentences are processed in a shallow manner. Experiment 2 uses the same stimuli as Experiment 1 but adds questions to ensure deeper processing. Results indicate that reading times are consistent with a lexical-pragmatic interpretation of number associated with context sentences, but responses to questions are consistent with the algorithmic computation of quantifier scope. Experiment 3 shows the same pattern of results as Experiment 2, despite using stimuli with different lexicalpragmatic biases. These effects suggest that language processing can be superficial, and that deeper processing, which is sensitive to structure, only occurs if required. Implications for recent studies of quantifier scope ambiguity are discussed.
Resumo:
The purpose of this research was to examine the ways in which individuals with mental illness create a life of purpose, satisfaction and meaning. The data supported the identification of four common themes: (1) the power of leisure in activation, (2) the power of leisure in resiliency, (3) the power of leisure in identity and (4) the power of leisure in reducing struggle. Through an exploration of the experience of having a mental illness, this project supports that leisure provides therapeutic benefits that transcend through negative life events. In addition, this project highlights the individual nature of recovery as a process of self-discovery. Through the creation of a visual model, this project provides a benchmark for how a small group of individuals have experienced living well with mental illness. As such, this work brings new thought to the growing body of mental health and leisure studies literature.
Characterizing Dynamic Optimization Benchmarks for the Comparison of Multi-Modal Tracking Algorithms
Resumo:
Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.
Resumo:
Epilepsy is a chronic neurological disorder characterized by recurrent seizures (Stein & Kanner, 2009). The purpose of this study was to understand the essence of being a young woman living with epilepsy using heuristic inquiry (Moustakas, 1990). The research was built upon the assumption that each experience is unique, yet commonalities exist. Five women aged 22 to 28 years living with epilepsy were interviewed. Additionally, the researcher described her life with epilepsy. Participants characterized life with epilepsy as a transformative journey. The act of meeting and interacting with another woman living with epilepsy provided an opportunity to remove themselves from the shadows and discuss epilepsy. Three major themes of seizures, medical treatment, and social relationships were developed revealing a complex view of an illness requiring engaged advocacy in the medical system. Respondents frequently make difficult adjustments to accommodate epilepsy. This study provides a complex in-depth view of life with epilepsy.
Resumo:
Many real-world optimization problems contain multiple (often conflicting) goals to be optimized concurrently, commonly referred to as multi-objective problems (MOPs). Over the past few decades, a plethora of multi-objective algorithms have been proposed, often tested on MOPs possessing two or three objectives. Unfortunately, when tasked with solving MOPs with four or more objectives, referred to as many-objective problems (MaOPs), a large majority of optimizers experience significant performance degradation. The downfall of these optimizers is that simultaneously maintaining a well-spread set of solutions along with appropriate selection pressure to converge becomes difficult as the number of objectives increase. This difficulty is further compounded for large-scale MaOPs, i.e., MaOPs possessing large amounts of decision variables. In this thesis, we explore the challenges of many-objective optimization and propose three new promising algorithms designed to efficiently solve MaOPs. Experimental results demonstrate the proposed optimizers to perform very well, often outperforming state-of-the-art many-objective algorithms.