8 resultados para Helmholtz equation.
em Brock University, Canada
Resumo:
Thesis (M. Sc.) - Brock University, 1978.
Resumo:
The Zubarev equation of motion method has been applied to an anharmonic crystal of O( ,,4). All possible decoupling schemes have been interpreted in order to determine finite temperature expressions for the one phonon Green's function (and self energy) to 0()\4) for a crystal in which every atom is on a site of inversion symmetry. In order to provide a check of these results, the Helmholtz free energy expressions derived from the self energy expressions, have been shown to agree in the high temperature limit with the results obtained from the diagrammatic method. Expressions for the correlation functions that are related to the mean square displacement have been derived to 0(1\4) in the high temperature limit.
Resumo:
We have calculated the thermodynamic properties of monatomic fcc crystals from the high temperature limit of the Helmholtz free energy. This equation of state included the static and vibrational energy components. The latter contribution was calculated to order A4 of perturbation theory, for a range of crystal volumes, in which a nearest neighbour central force model was used. We have calculated the lattice constant, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the adiabatic and the isothermal bulk modulus, and the Gruneisen parameter, for two of the rare gas solids, Xe and Kr, and for the fcc metals Cu, Ag, Au, Al, and Pb. The LennardJones and the Morse potential were each used to represent the atomic interactions for the rare gas solids, and only the Morse potential was used for the fcc metals. The thermodynamic properties obtained from the A4 equation of state with the Lennard-Jones potential, seem to be in reasonable agreement with experiment for temperatures up to about threequarters of the melting temperature. However, for the higher temperatures, the results are less than satisfactory. For Xe and Kr, the thermodynamic properties calculated from the A2 equation of state with the Morse potential, are qualitatively similar to the A 2 results obtained with the Lennard-Jones potential, however, the properties obtained from the A4 equation of state are in good agreement with experiment, since the contribution from the A4 terms seem to be small. The lattice contribution to the thermal properties of the fcc metals was calculated from the A4 equation of state, and these results produced a slight improvement over the properties calculated from the A2 equation of state. In order to compare the calculated specific heats and bulk moduli results with experiment~ the electronic contribution to thermal properties was taken into account~ by using the free electron model. We found that the results varied significantly with the value chosen for the number of free electrons per atom.
Resumo:
Expressions for the anharmonic Helmholtz free energy contributions up to o( f ) ,valid for all temperatures, have been obtained using perturbation theory for a c r ystal in which every atom is on a site of inversion symmetry. Numerical calculations have been carried out in the high temperature limit and in the non-leading term approximation for a monatomic facecentred cubic crystal with nearest neighbour c entralforce interactions. The numbers obtained were seen to vary by a s much as 47% from thos e obtai.ned in the leading term approximati.on,indicating that the latter approximati on is not in general very good. The convergence to oct) of the perturbation series in the high temperature limit appears satisfactory.
Resumo:
We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.
Resumo:
We have calculated the equation of state and the various thermodynamic properties of monatomic fcc crystals by minimizing the Helmholtz free energy derived in the high temperature limit for the quasiharmonic theory, QH, and the lowest-order (cubic and quartic), 'A2, anharmonic terms of the perturbation theory, PT. The total energy in each case is obtained by adding the static energy. The calculation of the thermal properties was carried out for a nearest-neighbour central-force model of the fcc lattice by means of the appropriate thermodynamic relations. We have calculated the lattice constant, the thermal expansion, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the isothermal and adiabatic bulk moduli, and the Griineisen parameter, for the rare-gas solids Kr and Xe, and gold. Morse potential and modified Morse potential were each used to represent the atomic interaction for the three fcc materials. For most of the calculated thermodynamic properties from the QH theory, the results for Kr and Xe with the modified Morse potential show an improvement over the results for the Morse potential when compared with the experimental data. However, the results of the 'A 2 equation of state with the modified Morse potential are in good agreement with experiment only in the case of the specific heat at constant volume and at constant pressure. For Au we have calculated the lattice contribution from the QH and 'A 2 PT and the electronic contribution to the thermal properties. The electronic contribution was taken into account by using the free electron model. The results of the thermodynamic properties calculated with the modified Morse potential were similar to those obtained with the Morse potential. U sing the minimized equation of state we also calculated the Mossbauer recoilless fraction for Kr and Xe and the Debye-Waller factor (DWF) for Pb, AI, eu, Ag, and Au. The Mossbauer recoilless fraction was obtained for the above two potentials and Lennard-Jones potential. The L-J potential gives the best agreement with experiment for Kr. No experimental data exists for Xe. At low temperature the calculated DWF results for Pb, AI, and eu show a good agreement with experimental values, but at high temperature the experimental DWF results increase very rapidly. For Ag the computed values were below the expected results at all temperatures. The DWF results of the modified Morse potential for Pb, AI, eu and Ag were slightly better than those of the Morse potential. In the case of Au the calculated values were in poor agreement with experimental results. We have calculated the quasiharmonic phonon dispersion curves for Kr, Xe, eu, Ag, and Au. The calculated and experimental results of the frequencies agree quite well for all the materials except for Au where the longitudinal modes show serious discrepancies with the experimental results. In addition, the two lowest-order anharmonic contributions to the phonon frequency were derived using the Green's function method. The A 2 phonon dispersion curves have been calculated only for eu, and the results were similar to those of the QH dispersion curves. Finally, an expression for the Griineisen parameter "( has been derived from the anharmonic frequencies, and calculated for these materials. The "( results are comparable with those obtained from the thermodynamic definition.
Resumo:
The anharmonic contributions of order A6 to the Helmholtz free energy for a crystal in which every atom is on a site of inversion symmetry, have been evaluated The cor~esponding diagrams in the various orders of the perturbation theory have been presented The validity of the expressions given is for high temperatures. Numerical calculations for the diagrams which contribute to the free energy have been worked out for a nearest-n~ighbour central-force model of a facecentered cubic lattice in the high-temperature limit and in the leading term and the Ludwig approximations. The accuracy of the Ludwig approximation in evaluating the Brillouin-zone sums has been investigated. Expansion for all diagrams in the high-temperature limit has been carried out The contribution to the specific heat involves a linear as well as cubic term~ We have applied Lennard-Jones, Morse and Exponential 6 types of potentials. A comparison between the contribution to the free energy of order A6 to that of order A4 has been made.
Resumo:
In this paper we study the extended Tanh method to obtain some exact solutions of KdV-Burgers equation. The principle of the Tanh method has been explained and then apply to the nonlinear KdV- Burgers evolution equation. A finnite power series in tanh is considered as an ansatz and the symbolic computational system is used to obtain solution of that nonlinear evolution equation. The obtained solutions are all travelling wave solutions.