5 resultados para HPLC (two dimensional high performance liquid chromatography)

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several automated reversed-phase HPLC methods have been developed to determine trace concentrations of carbamate pesticides (which are of concern in Ontario environmental samples) in water by utilizing two solid sorbent extraction techniques. One of the methods is known as on-line pre-concentration'. This technique involves passing 100 milliliters of sample water through a 3 cm pre-column, packed with 5 micron ODS sorbent, at flow rates varying from 5-10 mUmin. By the use of a valve apparatus, the HPLC system is then switched to a gradient mobile phase program consisting of acetonitrile and water. The analytes, Propoxur, Carbofuran, Carbaryl, Propham, Captan, Chloropropham, Barban, and Butylate, which are pre-concentrated on the pre-column, are eluted and separated on a 25 cm C-8 analytical column and determined by UV absorption at 220 nm. The total analytical time is 60 minutes, and the pre-column can be used repeatedly for the analysis of as many as thirty samples. The method is highly sensitive as 100 percent of the analytes present in the sample can be injected into the HPLC. No breakthrough of any of the analytes was observed and the minimum detectable concentrations range from 10 to 480 ng/L. The developed method is totally automated for the analysis of one sample. When the above mobile phase is modified with a buffer solution, Aminocarb, Benomyl, and its degradation product, MBC, can also be detected along with the above pesticides with baseline resolution for all of the analytes. The method can also be easily modified to determine Benomyl and MBC both as solute and as particulate matter. By using a commercially available solid phase extraction cartridge, in lieu of a pre-column, for the extraction and concentration of analytes, a completely automated method has been developed with the aid of the Waters Millilab Workstation. Sample water is loaded at 10 mL/min through a cartridge and the concentrated analytes are eluted from the sorbent with acetonitrile. The resulting eluate is blown-down under nitrogen, made up to volume with water, and injected into the HPLC. The total analytical time is 90 minutes. Fifty percent of the analytes present in the sample can be injected into the HPLC, and recoveries for the above eight pesticides ranged from 84 to 93 percent. The minimum detectable concentrations range from 20 to 960 ng/L. The developed method is totally automated for the analysis of up to thirty consecutive samples. The method has proven to be applicable to both purer water samples as well as untreated lake water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work includes two major parts. The first part of the work concentrated on the studies of the application of the highperfonnance liquid chromatography-particle beam interface-mass spectrometry system of some pesticides. Factors that have effects on the detection sensitivity were studied. The linearity ranges and detection limits of ten pesticides are also given in this work. The second part of the work concentrated on the studies of the reduction phenomena of nitro compounds in the HPLC-PB-MS system. Direct probe mass spectrometry and gas chromatography-mass spectrometry techniques were also used in the work. Factors that have effects on the reduction of the nitro compounds were studied, and the possible explanation is proposed. The final part of this work included the studies of reduction behavior of some other compounds in the HPLC-PB-MS system, included in them are: quinones, sulfoxides, and sulfones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of sample solvent composition and the injection volume, on the chromatographic peak profiles of two carbamate derivatives, methyl 2-benzimidazolecarbamate (MBC) and 3-butyl-2,4-dioxo[1,2-a]-s-triazinobenzimidazole (STB), were studied using reverse phase high performance liquid chromatograph. The study examined the effects of acetonitrile percentage in the sample solvent from 5 to 50%, effects of methanol percentage from 5 to 50%, effects of pH increase from 4.42 to 9.10, and effect of increasing buffer concentration from ° to 0.12M. The effects were studied at constant and increasing injection mass and at four injection volumes of 10, 50, 100 and 200 uL. The study demonstrated that the amount and the type of the organic solvents, the pH, and the buffer strength of the sample solution can have a pronounced effect on the peak heights, peak widths, and retention times of compounds analysed. MBC, which is capable of intramolecular hydrogen bonding and has no tendency to ionize, showed a predictable increase .in band broadening and a decrease in retention times at higher eluting strengths of the sample solvent. STB, which has a tendency to ionize or to strongly interact with the sample solvent, was influenced in various ways by the changes in ths sample solvent composition. The sample solvent effects became more pronounced as the injection volume increased and as the percentage of organic solvent in the sample solution became greater. The peak height increases for STB at increasing buffer concentrations became much more pronounced at higher analyte concentrations. It was shown that the widely accepted procedure of dissolving samples in the mobile phase does not yield the most efficient chromatograms. For that reason samples should be dissolved in the solutions with higher aqueous content than that of the mobile phase whenever possible. The results strongly recommend that all the samples and standards, regardless whether the standards are external or internal, be analysed at a constant sample composition and a constant injection volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis was to study factors related to the development of Brassica juncea as a sustainable nematicide. Brassica juncea is characterized by the glycoside (glucosinolate) sinigrin. Various methods were developed for the determination of sinigrin in Brassica juncea tissue extracts. Sinigrin concentrations in plant tissues at various stages of growth were monitored. Sinigrin enzymatically breaks down into allylisothiocyanate (AITC). AITC is unstable in aqueous solution and degradation was studied in water and in soil. Finally, the toxicity of AITC against the root-lesion nematode (Pratylenchus penetrans) was determined. A method was developed to extract sinigrin from whole Brassica j uncea tissues. The optimal time of extraction wi th boiling phosphate buffer (0.7mM, pH=6.38) and methanol/water (70:30 v/v) solutions were both 25 minutes. Methanol/water extracted 13% greater amount of sinigrin than phosphate buffer solution. Degradation of sinigrin in boiling phosphate buffer solution (0.13%/minute) was similar to the loss of sinigrin during the extraction procedure. The loss of sinigrin from boiling methanol/water was estimated to be O.Ol%/minute. Brassica juncea extract clean up was accomplished by an ion-pair solid phase extraction (SPE) method. The recovery of sinigrin was 92.6% and coextractive impurities were not detected in the cleaned up extract. Several high performance liquid chromatography (HPLC) methods were developed for the determination of sinigrin. All the developed methods employed an isocratic mobile phase system wi th a low concentration of phosphate buffer solution, ammonium acetate solution or an ion-pair reagent solution. A step gradient system was also developed. The method involved preconditioning the analytical column with phosphate buffer solution and then switching the mobile phase to 100% water after sample injection.Sinigrin and benzyl-glucosinolate were both studied by HPLC particle beam negative chemical ionization mass spectrometry (HPLCPB- NCI-MS). Comparison of the mass spectra revealed the presence of fragments arising from the ~hioglucose moiety and glucosinolate side-chain. Variation in the slnlgrin concentration within Brassica juncea plants was studied (Domo and Cutlass cuItivars). The sinigrin concentration in the top three leaves was studied during growth of each cultivar. For Cutlass, the minimum (200~100~g/g) and maximum (1300~200~g/g) concentrations were observed at the third and seventh week after planting, respectively. For Domo, the minimum (190~70~g/g) and maximum (1100~400~g/g) concentrations were observed at the fourth and eighth week after planting, respectively. The highest sinigrin concentration was observed in flower tissues 2050±90~g/g and 2300±100~g/g for Cutlass and Domo cultivars, respectively. Physical properties of AITC were studied. The solubility of AITC in water was determined to be approximately 1290~g/ml at 24°C. An HPLC method was developed for the separation of degradation compounds from aqueous AITC sample solutions. Some of the degradation compounds identified have not been reported in the literature: allyl-thiourea, allyl-thiocyanate and diallyl-sulfide. In water, AITC degradation to' diallyl-thiourea was favored at basic pH (9.07) and degradation to diallyl-sulfide was favored at acidic pH (4 . 97). It wap necessary to amend the aqueous AITC sample solution with acetonitrile ?efore injection into the HPLC system. The acetonitrile amendment considerably improved AITC recovery and the reproducibility of the results. The half-life of aqueous AITC degradation at room temperature did not follow first-order kinetics. Beginning with a 1084~g/ml solution, the half-life was 633 hours. Wi th an ini tial AITC concentration of 335~g/ml the half-life was 865 hours. At 35°C the half-life AITC was 76+4 hours essentially independent of the iiisolution pH over the range of pH=4.97 to 9.07 (1000~g/ml). AITC degradation was also studied in soil at 35°C; after 24 hours approximately 75% of the initial AITC addition was unrecoverable by water extraction. The ECso of aqueous AITC against the root-lesion nematode (Pratylenchus penetrans) was determined to be approximately 20~g/ml at one hour exposure of the nematode to the test solution. The toxicological study was also performed with a myrosinase treated Brassica juncea extract. Myrosinase treatment of the Brassica juncea extract gave nearly quantitative conversion of sinigrin into AITC. The myrosinase treated extract was of the same efficacy as an aqueous AITC solution of equivalent concentration. The work of this thesis was focused upon understanding parameters relevant to the development of Brassica juncea as a sustainable nematicide. The broad range of experiments were undertaken in support of a research priority at Agriculture and Agri-Food Canada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chicl( brain growth factor (CBGF) is a mitogen isolated from embryonic chick brains thought to have a potential role as a trophic factor involved in nerve dependent amphibian limb regeneration. In addition, CBGF stimulates 3H-thymidine incorporation in chick embryo brain astrocytes in vitro. In this study, cultured chick embryo brain non-neuronal cells were employed in a bioassay to monitor CBGF activity throughout various stages of its pllrification. Cell culture and assay conditions were optimized. Nonneuronal cells grew best on collagen-coated culture dishes in complete medium, were most responsive to a growth stimulus [10% fetal bovine serum (FBS)] at the second and third subcultures, and were healthiest when rendered "quiescent" in medium supplemented with 1% FBS. The most effective bioassay conditions consisted of a minimum 14.5 hour "quiescence" time (24 hours was used), a 6 hour "prestimulation" time, and a 24 hour 3H-thymidine labeling time. Four-day subconfluent primary non-neuronal cells consisted of 6.63% GFAP positive cells; as a result cultures were thought to be mainly composed of astroblasts. CBGF was purified from 18-day chick embryo brains by ultrafiltration through Amicon PM-30 and YM-2 membranes, size exclusion chromatography through a Biogel P6 column, and analytical reverse-phase high-performance liquid chromatography (rp-HPLC). The greatest activity resided in rp-HPLC fraction #7 (10 ng/ml) which was as effective as 10% FBS at stimulating 3H-thymidine incorporation in chick embryo brain nonneuronal cells. Although other researchers report the isolation of a mitogenic fraction consisting of 5'-GMP from the embryonic chick brain, UV absorbance spectra, rp-HPLC elution profiles, and fast atom bombardment (FAB) mass spectra indicated that CBGF is neither 5'-GMP nor 51-AMP. 2 Moreover, commercially available 5t-GMP was inhibitory to 3H-thymidine incorporation in the chick non-neuronal cells, while Sf-AMP had no effect. Upon treatment with pronase, the biological activity of fraction P6-3 increased; this increase was nearly 30% greater than what would be expected from a simple additive effect of any mitogenic activity of pronase alone together with P6-3 alone. This may suggest the presence of an inhibitor protein. The bioactive component may be a protein protected by a nucleoside/nucleotide or simply a nucleoside/nucleotide acting alone. While the FAB mass spectrum of rp-HPLC fraction #7 did not reveal molecular weight or sequence information, the ion of highest molecular weight was observed at m/z 1610; this is consistent with previous estimations of CBGF's size. 3