6 resultados para HEXANE

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple High Performance Liquid Chromatograph (HPLC) method has been developed to identify benamyl (methyl 1- (butylcarbamoyl)-2-benzimidazole carbamate) and MBC (methyl 2-benzimidazole carbamat~ residues on apple leaves without cleanup. Sample leaves are freeze dried in a Mason jar and residues are then extracted by tumbling them in chloroform containing 5,000 microgram per milliliter of n-propyl isocyanate (PIC) at 10 C. To the extract, n-butyl isocyanate (BIC) was added at 5,000 microgram per milliliter and 20 microliter of this mixture injected onto the HPLC system. Separation is accomplished by the use of a Brownlee LiChrosorb silica gel column with a guard column and' operated with a mixed mobile phase consisting of chloroform and hexane (4:1) saturated with water. MBC, a degradation product of benomyl is identified if present as methyl l-(npropyl carbamoyl)-2-benzimidazole carbamate (MBC-n-PIC). Both benomyl and MBC-n-PIC can be detected with aKUltraviolet (UV) detector (280nm) at a concentration as low as 0.2 microgram per milliliter in apple leaves. The fate of benomyl on apple foliage after spray application of benomyl (Ben late 50 per cent wettable powder) was investigated by the method thus described. Benomyl quickly dissipated during the first 3-7 days, but the dissipatio'n sltowed down thereafter. In contrast, the concentration of MBC in leaves gradually increased after repeated applications of Benlate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular mechanics calculations were done on tetrahedral phosphine oxide zinc complexes in simulated water, benzene and hexane phases using the DREIDING II force field in the BIOGRAF molecular modeling program. The SUN workstation computer (SUN_ 4c, with SPARK station 1 processor) was used for the calculations. Experimental structural information used in the parameterization was obtained from the September 1989 version of the Cambridge Structural Database. 2 Steric and solvation energies were calculated for complexes of the type ZnCl2 (RlO)2' The calculations were done with and without inclusion of electrostatic interactions. More reliable simulation results were obtained without inclusion of charges. In the simulated gas phase, the steric energies increase regularly with number of carbons in the alkyl group, whereas they go through a maximum when solvent shells are included in the calculation. Simulated distribution ratios vary with chain length and type of chain branching and the complexes are found to be more favourable for extraction by benzene than by hexane, in accord with experimental data. Also, in line with what would be expected for a favorable extraction, calculations without electrostatics predict that the complexes are better solvated by the organic solvents than by water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phosphonium salt room temperature ionic liquid tetradecyltrihexylphosphonium chloride (THPC) has been employed as an efficient reusable media for the palladium catalyzed Suzuki cross-coupling reaction of aryl halides, including aryl chlorides, under mild conditions. The cross-coupling reactions were found to proceed in THPC containing small amounts ofwater and toluene (single phase) using potassium phosphate and 1% Pd2(dba)3'CHCI3. Variously substituted iodobenzenes, including electron rich derivatives, reacted efficiently in THPC with a variety of arylboronic acids and were all complete within 1 hour at 50°C. The corresponding aryl bromides also reacted under these conditions with the addition of a catalytic amount of triphenylphosphine that allowed for complete conversion and high isolated yields. The reactions involving aryl chlorides were considerably slower, although the addition of triphenylphosphine and heating at 70°C allowed high conversion of electron deficient derivatives. Addition of water and hexane to the reaction products results in a triphasic system, from which the catalyst was then recycled by removing the top (hexanes) and bottom (aqueous) layers and adding the reagents to the ionic liquid which was heated again at 50°C; resulting in complete turnover of iodobenzene. Repetition of this procedure gave the biphenyl product in 82-97% yield (repeated five times) for both the initial and recycled reaction sequences. IL ESTERIFICATIONREACTION A new class oftrialkylphosphorane has been prepared through reaction of a trialkylphosphine with 2-chlorodimethylmalonate in the presence oftriethylamine. These new reagents promote the condensation reaction of carboxylic acids with alcohols to provide esters along with trialkylphosphine oxide and dimethylmalonate. The condensation reaction of chiral secondary alcohols can be controlled to give either high levels of inversion or retention through a subtle interplay involving basicity of the reaction media, solvent, and tuning the electronic and steric nature of the carboxylic acid and stenc nature of the phosphorane employed. A coherent mechanism is postulated to explain these observations involving reaction via an initial acyloxyphosphonium ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most challenging tasks for a synthetic organic chemist today, is the development of chemo, regio, and stereoselective methodologies toward the total synthesis of macromolecules. r . The objective of my thesis was to develop methodologies towards this end. The first part of my project was to develop highly functionalized chirons from D-glucose, a cheap, chiral starting material, to be utilized in this capacity. The second part of the project dealt with modifying the carbon-carbon bond forming Suzuki reaction, which is utilized quite often as a means of combining molecular sub units in total synthesis applications. As previously stated the first area of the project was to develop high value chirons from D-glucose, but the mechanism of their formation was also investigated. The free radical initiated oxidative fragmentation of benzylidene acetals was investigated through the use of several test-case substrates in order to unravel the possible mechanistic pathways. This was performed by reacting the different acetals with N-bromosuccinimide and benzoyl peroxide in chlorobenzene at 70^C in all cases. Of the three mechanistic pathways discussed in the literature, it was determined, from the various reaction products obtained, that the fragmentation of the initial benzylic radical does not occur spontaneously but rather, oxidation proceeds to give the benzyl bromide, which then fragments via a polar pathway. It was also discovered that the regioselectivity of the fragmentation step could be altered through incorporation of an allylic system into the benzylidene acetal. This allows for the acquisition of a new set of densely functionalized. chiral, valuable synthetic intermediates in only a few steps and in high yields from a-Dglucose. The second part of the project was the utilization of the phosphonium salt room temperature ionic liquid tetradecyltrihexylphosphonium chloride (THPC) as an efficient reusable medium for the palladium catalyzed Suzuki cross-coupling reaction of aryl halides, including aryl chlorides, under mild conditions. The cross-coupling reactions were found to proceed in THPC containing small amounts of water and toluene using potassium phosphate and 1% Pd2(dba)3. Variously substituted iodobenzenes, including electron rich derivatives, reacted efficiently in THPC with a variety of arylboronic acids and afforded complete conversion within 1 hour at 50 ^C. The corresponding aryl bromides also reacted under these conditions with the addition of a catalytic amount of triphenylphosphine that allowed for complete conversion and high isolated yields. The reactions involving aryl chlorides were considerably slower, although the addition of triphenylphosphine and heating at 70 ^C allowed high conversion of electron deficient derivatives. Addition of water and hexane to the reaction products results in a triphasic system in which the top hexane phase contained the biaryl products, the palladium catalyst remained fully dissolved in the central THPC layer, while the inorganic salts were extracted into the lower aqueous phase. The catalyst was then recycled by removing the top and bottom layers and adding the reagents to the ionic liquid which was heated again at 50 ^C; resulting in complete turnover of iodobenzene. Repetition of this procedure gave the biphenyl product in 82-97% yield (repeated five times) for both the initial and recycled reaction sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decomposition and side reactions of, and the synthetic use of, pentafluorophenylmagnesium bromide and pentafluorophenyllithium have been investigated using G,C9/M.S, techniques• Their reactions with reagents such as CgF^X (X - H, F, CI, Br, 1), C6F4X2 (X - H, CI)f C6F3C13, C6H6. (CgX5)3P (X = H, F), (C6X5)3P=0 (X = H, F), (CgX5)Si (CH3)3 (X = H, F) and (CH0K SiCl , n = 1,2, in ether or ether/n-hexane were studied• In addition to the principal reaction of synthetic use, namely the replacement of a halogen by a pentafluorophenyl group, two types of side reactions were observed* These were (i) intermolecular loss of LiF via a nucleophilic substitution, and (ii) intramolecular loss of LiF, followed by the addition of either inorganic salts such as lithium or magnesium halides, or organometal compounds such as organolithium or organo-Grigaard* G.C«/M.S. techniques were routinely employed to study complicated reaction mixtures. Although mass spectrometry alone has disadvantages for the identification of isomers, deduction of the most probable pathway often helps overcome this problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since its discovery in 1922, vitamin E has been widely investigated for its role as a powerful, chain-breaking antioxidant that is required for human health. However, some basic issues still remain unclear, such as the mechanism and dynamics of the intracellular trafficking of a-tocopherol. To better understand tocopherol's biological activity at the cellular level, fluorescence spectroscopy and microscopy have been found to be valuable tools. This thesis reports the synthesis of a new fluorescent analogue of a-tocopherol, atocohexaenol, an intrinsically fluorescent analogue of a-tocopherol. Different methodologies of preparation have been attempted and a strategy using a preformed chromanol head plus ClO and Cs portion of the polyene side chain finally provided us the desired a-tocohexaenol. a-Tocohexaenol shows a strong fluorescence in both ethanol and hexanes with maximum Aab = 368 nm and maximum /...em = 521 nm. This compound is stable for a couple of weeks in ethanol or hexane solution if stored at 0 °C and protected form light. It decomposes slowly at room temperature and light will accelerate its decomposition (within 5 hours). Thus, a-Tocohexaenol may be a useful fluorescent probe to study the biochemistry and cell biology of vitamin E.