7 resultados para HARMONIC-OSCILLATOR
em Brock University, Canada
Resumo:
A detailed theoretical investigation of the large amplitude motions in the S, excited electronic state of formic acid (HCOOH) was done. This study focussed on the the S, «- So electronic band system of formic acid (HCOOH). The torsion and wagging large amplitude motions of the S, were considered in detail. The potential surfaces were simulated using RHF/UHF ab-initio calculations for the two electronic states. The energy levels were evaluated by the variational method using free rotor basis functions for the torsional coordinates and harmonic oscillator basis functions for the wagging coordinates. The simulated spectrum was compared to the slit-jet-cooled fluorescence excitation spectrum allowing for the assignment of several vibronic bands. A rotational analysis of certain bands predicted that the individual bands are a mixture of rotational a, b and c-type components.The electronically allowed transition results in the c-type or Franck-Condon band and the electronically forbidden, but vibronically allowed transition creates the a/b-type or Herzberg-Teller components. The inversion splitting between these two band types differs for each band. The analysis was able to predict the ratio of the a, b and c-type components of each band.
Resumo:
The algebraic expressions for the anharmonic contributions to the Debye-Waller factor up to 0(A ) and 0 L% ) £ where ^ is the scattering wave-vector] have been derived in a form suitable for cubic metals with small ion cores where the interatomic potential extends to many neighbours. This has been achieved in terms of various wave-vector dependent tensors, following the work of Shukla and Taylor (1974) on the cubic anharmonic Helmholtz free energy. The contribution to the various wave-vector dependent tensors from the coulomb and the electron-ion terms in the interatomic metallic potential has been obtained by the Ewald procedure. All the restricted multiple whole B r i l l o u i n zone (B.Z.) sums are reduced to single whole B.Z. sums by using the plane wave representation of the delta function. These single whole B.Z. sums are further reduced to the •%?? portion of the B.Z. following Shukla and Wilk (1974) and Shukla and Taylor (1974). Numerical calculations have been performed for sodium where the Born-Mayer term in the interatomic potential has been neglected because i t is small £ Vosko (1964)3 • *n o^er to compare our calculated results with the experimental results of Dawton (1937), we have also calculated the r a t io of the intensities at different temperatures for the lowest five reflections (110), (200), (220), (310) and (400) . Our calculated quasi-harmonic results agree reasonably well with the experimental results at temperatures (T) of the order of the Debye temperature ( 0 ). For T » © ^ 9 our calculated anharmonic results are found to be in good agreement with the experimental results.The anomalous terms in the Debye-Waller factor are found not to be negligible for certain reflections even for T ^ ©^ . At temperature T yy Op 9 where the temperature is of the order of the melting temperature (Xm) » "the anomalous terms are found to be important almost for all the f i ve reflections.
Resumo:
/c-(BETS)2FeBr4 is the first antiferromagnetic organic superconductor with successive antiferromagnetic and superconducting transitions at Ta^=2.5K and Tc=l.lK respectively at ambient pressure. Polarized reflectance measurements were performed on three single crystalsamples of this material using a Briiker IFS66V/S Interferometer, and a Bolometer detector or an MCT detector, at seven temperatures between 4K and 300K, in both the far-infrared and mid-infrared frequency range. After the reflectance results were obtained, the Kramers-Kronig dispersion relation was apphed to determine the optical conductivity of /c-(BETS)2FeBr4 at these seven temperatures. Additionally, the optical conductivity spectra were fitted with a Drude/Lorentz Oscillator model in order to study the evolution of the optical conductivity with temperature along the a-axis and c-axis. The resistivities calculated from the Drude model parameters along the a-axis and c-axis agreed reasonably with previous transport measurements.
Resumo:
The near ultraviolet absorption of phosgene has been assigned to a * 1 1 ~.--n, A;-- Al electronic transition from vapour phase spectra recorded under conditions of high resolution and low_t~mperature. Progressions in Vi, v2' V3' V4 and V4 ha\1e been identified in the spectrum and have been analyzed in terms of vibronic transitions between a planar ground and a nonplanar excited state. A ba~rier height of 3170 cm~l:and a nona planar equilibrium angle of 32.5 were calculated for the upper state from a fit of the energy levels of a Lorentzian-guadratic potential func- ~ion to the observed levels of V 4 . ' ~he false ori- 3in, 41 0 , of the spectrum has been assigned to the band at 33,631 cm -1 . An oscillator strength of -3 1 . 1 f = 1. a x 10 has been obtained for the A - A 2 1 transition.
Resumo:
Molec ul ar dynamics calculations of the mean sq ua re displacement have been carried out for the alkali metals Na, K and Cs and for an fcc nearest neighbour Lennard-Jones model applicable to rare gas solids. The computations for the alkalis were done for several temperatures for temperature vol ume a swell as for the the ze r 0 pressure ze ro zero pressure volume corresponding to each temperature. In the fcc case, results were obtained for a wide range of both the temperature and density. Lattice dynamics calculations of the harmonic and the lowe s t order anharmonic (cubic and quartic) contributions to the mean square displacement were performed for the same potential models as in the molecular dynamics calculations. The Brillouin zone sums arising in the harmonic and the quartic terms were computed for very large numbers of points in q-space, and were extrapolated to obtain results ful converged with respect to the number of points in the Brillouin zone.An excellent agreement between the lattice dynamics results was observed molecular dynamics and in the case of all the alkali metals, e~ept for the zero pressure case of CSt where the difference is about 15 % near the melting temperature. It was concluded that for the alkalis, the lowest order perturbation theory works well even at temperat ures close to the melting temperat ure. For the fcc nearest neighbour model it was found that the number of particles (256) used for the molecular dynamics calculations, produces a result which is somewhere between 10 and 20 % smaller than the value converged with respect to the number of particles. However, the general temperature dependence of the mean square displacement is the same in molecular dynamics and lattice dynamics for all temperatures at the highest densities examined, while at higher volumes and high temperatures the results diverge. This indicates the importance of the higher order (eg. ~* ) perturbation theory contributions in these cases.
Resumo:
The capability of molecular mechanics for modeling the wide distribution of bond angles and bond lengths characteristic of coordination complexes was investigatecl. This was the preliminary step for future modeling of solvent extraction. Several tin-phosphine oxide COrnI)le:){es were selected as the test groUl) for t.he d,esired range of geometry they eX!libi ted as \-vell as the ligands they cOD.tained r Wllich were c\f interest in connection with solvation. A variety of adjustments were made to Allinger's M:M2 force·-field ill order to inl.prove its performance in the treatment of these systems. A set of u,nique force constants was introduced for' those terms representing the metal ligand bond lengths, bond angles, and, torsion angles. These were significantly smaller than trad.itionallY used. with organic compounds. The ~1orse poteIlt.ial energ'Y function was incorporated for the M-X l')ond lE~ngths and the cosine harmonic potential erlerg-y function was invoked for the MOP bond angle. These functions were found to accomodate the wide distribution of observed values better than the traditional harmonic approximations~ Crystal packing influences on the MOP angle were explored thr"ollgh ttle inclusion of the isolated molecule withil1 a shell cc)ntaini11g tl1e nearest neigl1'bors duri.rlg energy rninimization experiments~ This was found to further improve the fit of the MOP angle.
Resumo:
Impurity free eluission spectra of HCCCHO and DCCCHO have been rephotographed using the electronic-energy-exchange method with benzene as a carrier gas. The near ultraviolet spectra of ReeCHO and DCCCHO were photographed in a sorption under conditions of high resolution with absorption path lengths up to 100 meters. The emission and absorption spectra of Propynal resulting from 3 n 1 t 1\ - A excitation has been reanalyzed in som.e detail. Botrl of the eH out-of-plane wagging modes were found to have negative anharmonicity. A barrier height of 56.8/0.0 cm- 1 and a nonplanar oft , , equilibrium angle of 17 3 /30 are calculated for the V 10/ lJ 11 modes. The in-plane and out-of-plane v1. brational modes in the 3A." and 1a~. ' elec ronic states of Propynal were subjected to a normal coordinate treatment in the approximat :on of tIle Urey-Bradley force field. From the relative oscillator strengths of the trans1·t1·0ns connect i ng t he v ibrat1•0n1ess lA' , state and t,he V1· bron1·C 3· if levels of the A state, the differences in equilibrium configuration were evaluated from an approximate Franck-Condon analysis based on the ground state normal coordinates. As this treatment gave 512 possible geometrical structures for the upper state, it 4 was necessary to resort to a comparison of the observed and calculated moments of inertia along with chemical intuition to isolate the structure. A test of the correctness of the calculated structure change and the vibrational assignment was raade by evaluating the intensities of the inplane and out-oi-plane fundarnental, sequence, and cross sequellce transitions y the exact Franck-Condon method.