2 resultados para HABITAT STRUCTURE
em Brock University, Canada
Resumo:
Changes in the configuration of a tree stern result insignificant differences in its total volume and in the proportion of that volume that is merchantable timber. Tree allometry, as represented by stem-fo~, is the result of the vertical force of gravity and the horizontal force of wind. The effect of wind force is demonstrated in the relationship between stem-form, standclosure and site-conditions. An increase in wind force on the individual tree due to a decrease in stand density should produce a more tapered tree. The density of the stand is determined by the conditions that the trees are growing under. The ability of the tree to respond to increased wind force may also be a function of these conditions . This stem-form/stand-closure/site-conditions relationship was examined using a pre-existing database from westcentral Alberta. This database consisted of environmental, vegetation, soils and timber data covering a wide range of sites. There were 653 sample trees with 82 variables that formed the basis of the analysis. There were eight tree species consisting of Pinus contorta, Picea mariana, Picea engelmannii x glauca, Abies lasiocarpa, Larix laricina, Populus tremuloides, Betula papyrifera and Populus balsamifera plus a comprehensive all-species data set. As the actual conformation of the stern is very individual, stem-fo~was represented by the diameter at breast height to total height r~tio. The four stand-closure variables, crown closure, total basal area, total volume and total number of stems were reduced to total basal area and total number of stems utilizing a bivariate correlation matrix by species. Site-conditions were subdivided into macro, meso and micro variables and reduced in number 3 using cross-tabulations, bivariate correlation and principal components analysis as screening tools. The stem-fo~/stand-closure relationship was examined using bivariate correlation coefficients for stem-fo~ with total number of stems and stem-fo~ with total basal area. The stem-fo~/site-conditions and the stand-closure/site- conditions relationships were examined using multiple correlation coefficients. The stem-form/stand-closure/site-conditions relationship was examined using multiple correlation coefficients in separate analyses for both total number of stems and total basal area. An increase in stand-closure produced a decrease in stem-form for both total number of stems and total basal area for most species. There was a significant relationship between stem-form and site-conditions and between stand-closure and site-conditions for both total number of stems and total basal area for most species. There was a significant relationship between the stemform and site-conditions, including the stand-closure, for most species; total number of stems was involved independently of the site-conditions in the prediction of stem-form and total basal area was not. Larix laricina and Betula papyrifera were the exceptions to the trends observed with most species. The influence of both stand-closure (total number of stems in particular) and site-conditions (elevation in particular) suggest that forest management practices should include these- ecological parameters in determining appropriate restocking levels.
Resumo:
This study examined annual variation in phenology, abundance and diversity of a bee community during 2003, 2004, 2006, and 2008 in recovered landscapes at the southern end of St. Catharines, Ontario, Canada. Overall, 8139 individuals were collected from 26 genera and sub-genera and at least 57 species. These individuals belonged to the 5 families found in eastern North America (Andrenidae, Apidae, Colletidae, Halictidae and Megachilidae). The bee community was characterized by three distinct periods of flight activity over the four years studied (early spring, late spring/early summer, and late summer). The number of bees collected in spring was significantly higher than those collected in summer. In 2003 and 2006 abundance was higher, seasons started earlier and lasted longer than in 2004 and 2008, as a result of annual rainfall fluctuations. Differences in abundance for low and high disturbance sites decreased with years. Annual trends of generic richness resembled those detected for species. Likewise, similarity in genus and species composition decreased with time. Abundant and common taxa (13 genera and 18 species) were more persistent than rarer taxa being largely responsible for the annual fluctuations of the overall community. Numerous species were sporadic or newly introduced. The invasive species Anthidium oblongatum was first recorded in Niagara in 2006 and 2008. Previously detected seasonal variation patterns were confirmed. Furthermore, this study contributed to improve our knowledge of temporal dynamics of bee communities. Understanding temporal variation in bee communities is relevant to assessing impacts caused on their habitats by diverse disturbances.