2 resultados para Guest-host interactions

em Brock University, Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The exact mechanistic understanding of various organocatalytic systems in asymmetric reactions such as Henry and aza-Henry transformations is important for developing and designing new synthetic organocatalysts. The focus of this dissertation will be on the use of density functional theory (DFT) for studying the asymmetric aza-Henry reaction. The first part of the thesis is a detailed mechanistic investigation of a poorly understood chiral bis(amidine) (BAM) Brønsted acid catalyzed aza-Henry reaction between nitromethane and N-Boc phenylaldimine. The catalyst, in addition to acting as a Brønsted base, serves to simultaneously activate both the electrophile and the nucleophile through dual H-bonding during C-C bond formation and is thus essential for both reaction rate and selectivity. Analysis of the H-bonding interactions revealed that there was a strong preference for the formation of a homonuclear positive charge-assisted H-bond, which in turn governed the relative orientation of substrate binding. Attracted by this well-defined mechanistic investigation, the other important aspect of my PhD research addressed a detailed theoretical analysis accounting for the observed selectivity in diastereoselective versions of this reaction. A detailed inspection of the stereodetermining C-C bond forming transition states for monoalkylated nitronate addition to a range of electronically different aldimines, revealed that the origins of stereoselectivity were controlled by a delicate balance of different factors such as steric, orbital interactions, and the extent of distortion in the catalyst and substrates. The structural analysis of different substituted transition states established an interesting dependency on matching the shape and size of the catalyst (host molecule) and substrates (guest molecules) upon binding, both being key factors governing selectivity, in essence, offering an analogy to positive cooperative binding effect of catalytic enzymes and substrates in Nature. In addition, both intra-molecular (intra-host) and inter-molecular (host-guest, guest-guest) stabilizing interactions play a key role to the high π-facial selectivity. The application of dispersion-corrected functionals (i.e., ωB97X-D and B3LYP-D3) was essential for accurately modeling these stabilizing interactions, indicating the importance of dispersion effects in enantioselectivity. As a brief prelude to more extensive future studies, the influence of a triflate counterion on both reactivity and selectivity in this reaction was also addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular, non-flagellar appendages, termed fimbriae are widespread among fungi. Fungal fimbriae range in diameter from 6-10 nm and exhibit lengths of up to 30 ~m. Fungal fimbriae have been implicated in several functions: adhesion, conjugation and flocculation. A possible role of fimbriae in host-mycoparasite interactions was the focus of this study . Using electron microscopy, fimbriae were observed on the surfaces of Mortiere lla cande labrum, Mortie re lla pusi lla and Phascolomyces articulosus with diameter means of 9.1±0.4 nm, 9.4±0.5 nm and 8.6±0.6 nm, respectively, and lengths of up to 25 ~m. Fimbriae were not observed on the surface of the mycoparasite, Piptocephalis virginiana. Polyclonal antiserum (AU) prepared against the fimbrial protein of Ustilago violacea cross-reacted with 60 and 57 kDa M. candelabrum proteins. In addition, AU cross-reacted with 64 kDa proteins from both M. pusilla and P. articulosus. The proteins that cross-reacted with AU were electroeluted from polyacrylamide gels and were shown to subsequently form fibrils. The diameter means for the electroeluted fibrils were: for M. candelabrum 9.7±0.3 nm, M. pusilla 8.4±0.6 nm and P articulosus 9.2±0.5 nm. Finally, to ascertain the role of fimbriae in host-mycoparasite interactions, AU was incubated with P. virginiana and M. pusilla (mycoparasite/susceptible host) and with P. virginiana and P . articulosus (mycoparasite/ resistant host). It was observed that AU decreased significantly the level of contact between P. virginiana and M. pusilla and between P. virginiana and P. articulosus in comparison to prelmmune serum treatments. Thus, it was proposed that fimbriae might play recognition and attachment roles in early events of mycoparasitism.