3 resultados para Gross motor function classification system
em Brock University, Canada
Resumo:
The relationship between the child's cogni tive development and neurological maturation has been of theoretical interest for many year s. Due to diff iculties such as the lack of sophisticated techniques for measur ing neurolog ical changes and a paucity of normative data, few studies exist that have attempted to correlate the two factors. Recent theory on intellectual development has proposed that neurological maturation may be a factor in the increase of short-term memory storage space. Improved technology has allowed reliable recordings of neurolog ical maturation.. In an attempt to correlate cogni tive development and neurological maturation, this study tested 3-and II-year old children. Fine motor and gross motor short-term memory tests were used to index cogni tive development. Somatosensory evoked potentials elici ted by median nerve stimulation were used to measure the time required for the sensation to pass along the nerve to specific points on the somatosensory pathway. Times were recorded for N14, N20, and P22 interpeak latencies. Maturation of the central nervous system (brain and spinal cord) and the peripheral nervous system (outside the brain and spinal cord) was indi~ated by the recorded times. Signif icant developmental di fferences occurred between 3-and ll-year-olds in memory levels, per ipheral conduction velocity and central conduction times. Linear regression analyses showed that as age increased, memory levels increased and central conduction times decreased. Between the ll-year-old groups, there were no significant differences in central or peripheral nervous system maturation between subjects who achieved a 12 plus score on the digit span test of the WISC-R and those who scored 7 or lower on the same test. Levels achieved on the experimental gross and fine motor short-term memory tests differed significantly within the ll-year-old group.
Resumo:
The current classification system for spinal cord injury (SCI) considers only somatic information and neglects autonomic damage after injiuy. Heart rate variability (HRV) has the potential to be a valuable measure of cardiac autonomic control after (SCI). Five individuals with tetraplegia and four able-bodied controls underwent 1 min continuous ECG recordings during rest, after Metoprolol administration (max dose=3x5mg) and after Atropine administration (0.02mg/kg) in both supine and 40° head-up tilt. After Metoprolol administration there was a 61.8% decrease in the LF:HF ratio in the SCI participants suggesting that the LF:HF ratio is a reflection of cardiac sympathetic outflow. After Atropine administration there was a 99.1% decrease in the HF power in the SCI participants suggesting that HF power is highly representative of cardiac parasympathetic outflow. There were no significant differences between the SCI and able-bodied participants. Thus, HRV measures are a valid index of cardiac autonomic control after SCI.
Resumo:
The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.