4 resultados para Golgi stain

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endocrine pancreas of the rock bass (Ambloplites rupestris) was examined by light and electron microscopy. Two cell types with staining properties similar to mammalian A and B cells, and a third, non-staining cell type were found in the spherical pancreatic islets that were surrounded by a connective tissue capsule and embedded in two small masses of exocrine tissue. From an analysis of the ultrastructure of the A and B cells, a secretory cycle for each of these cell types was proposed. The secretory cycle of the A cell consisted of three well defined stages: (1) A cell production stage: during which A granule formation occurred in the sacs of the Golgi apparatus and the cell was characterized by the presence of numerous secretory granules, some elements of lamellar endoplasmic reticulum, and a homogeneously granular nucleus. The cytoplasm contained few distended cisternae, variable numbers of free ribosomes, microtubules and small vesicles. (2) A cell release stage: during which the release of A granules occurred and the cell usually contained several large distended cisternae and variable numbers of secretory granules. Granule release mechanisms included exocytosis, by which individual granules were released into the extracellular space after their membranes fused with the plasmalemma, and emiocytosis, by which one or more granules were released into a large cisterna whose membrane fused with the plasmalemma and formed a pore through which the cisternal contents passed out of the cell. (3) A cell reorganization stage: during which the changeover from the release stage to the production stage occurred and the reorganization of organelles and membrane structures took place. The cell contained few secretory granules and numerous small endoplasmic reticular cisternae. The cytoplasm exhibited less electron density than either of the other two stages. The A granule after formation underwent a series of morphological changes which were described in four numerically identified phases. The secretory cycle of the B cell consisred of two stages: (1) B cell production stage: during which the B granule formation occurred in the sacs of the Go1gi apparatus. The cell was characterized by an irregular outline, the presence of numerous secretory granules, and an irregularly shaped nucleus which contained variable amounts of clumped chromatin. The cytoplasm contained moderate amounts of lamellar endoplasmic reticulum studded with ribosomes, several small vesicles, and an active Go1gi apparatus. (2) B cell release stage: during which the release of B granules occurred. The cell contained a rounded nucleus with dispersed chromatin, several distended endoplasmic reticular cisternae and a variable number of secretory granules. Granule release occu~ by emiocytosis and exocytosis similar to that found for the A cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black fly (Simuliidae) silk is produced by the larvae and pharate pupae and is used for anchorage and cocoon production. There exists limited information on simuliid silks, including protein composition and genetic sequences encoding such proteins. The present study aimed to expand what is known about simuliid silks by examining the silks of several simuliid species and by making comparisons to the silk of non-biting midges (Chironomidae). Silk glands were dissected out of larval and pupal simuliids, and protein contents were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and visualized with silver stain. Protein contents were compared by mass in kilodaltons (kDa) between life stages and among species. Polymerase chain reaction (PCR) was used to expand upon known gene sequence information, and to determine the presence of genes homologous to chironomid silk. SDS-PAGE of cocoons revealed the presence of a 56 kDa and a 67 kDa protein. Silk gland contained as many as 28 different proteins ranging from 319 kDa to 8 kDa. Protein profiles vary among species, and group into large (>200), intermediate(>100), and small (<100) protein classes as is found in chironomids. It is likely that silk evolved in a common ancestor of simuliids and chironomids

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper Canada warrant of appraisement: warrant of the Surrogate of the District of Niagara to Isaac Hurst, George Bradshaw and Bernard Frey to appraise the goods and chattels of James Fields Deacon. This item is torn and has been taped. There is a hole where the seal has been and there is a stain. This does not affect the text, June 15, 1801.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have demonstrated that the oxysterol binding protein (OSBP) acts as a phosphatidylinositol phosphate (PIP)-sterol exchanger at membrane contact sites (MCS) of the endoplasmic reticulum (ER) and Golgi. OSBP is known to pick up phosphatidylinositol-4-phosphate (PI(4)P) from the ER, transfer it to the trans-Golgi in exchange for a cholesterol molecule that is then transferred from the trans-Golgi to the ER. Upon further examination of this pathway by Ridgway et al. (1), it appeared that phosphorylation of OSBP played a role in the localization of OSBP. The dephosphorylation state of OSBP was linked to Golgi localization and the depletion of cholesterol at the ER. To mimic the phosphorylated state of OSBP, the mutant OSBP-S5E was designed by Ridgway et al. (1). The lipid and sterol recognition by wt-OSBP and its phosphomimic mutant OSBP-S5E were investigated using immobilized lipid bilayers and dual polarization interferometry (DPI). DPI is a technique in which the protein binding affinity to immobilized lipid bilayers is measured and the binding behavior is examined through real time. Lipid bilayers containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and varying concentrations of PI(4)Ps or sterols (cholesterol or 25-hydroxycholesterol) were immobilized on a silicon nitride chip. It was determined that wt-OSBP binds differently to PI(4)P-containing bilayers compared to OSBP-S5E. The binding behavior suggested that wt-OSBP extracts PI(4)P and the change in the binding behavior, in the case of OSBP-S5E, suggested that the phosphorylation of OSBP may prevent the recognition and/or extraction of PI(4)P. In the presence of sterols, the overall binding behavior of OSBP, regardless of phosphorylation state, was fairly similar. The maximum specific bound mass of OSBP to sterols did not differ as the concentration of sterols increased. However, comparing the maximum specific bound mass of OSBP to cholesterol with oxysterol (25-hydroxycholesterol), OSBP displayed nearly a 2-fold increase in bound mass. With the absence of the wt-OSBP-PI(4)P binding behavior, it can be speculated that the sterols were not extracted. In addition, the binding behavior of OSBP was further tested using a fluorescence based binding assay. Using 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (22-NBD cholesterol), wt-OSBP a one site binding dissociation constant Kd, of 15 ± 1.4 nM was determined. OSBP-S5E did not bind to 22-NBD cholesterol and Kd value was not obtained.