3 resultados para Glutamine synthetase

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adapted metabolic response of commercial wine yeast under prolonged exposure to concentrated solutes present in Icewine juice is not fully understood. Presently, there is no information regarding the transcriptomic changes in gene expression associated with the adaptive stress response ofwine yeast during Icewine fermentation compared to table wine fermentation. To understand how and why wine yeast respond differently at the genomic level and ultimately at the metabolic level during Icewine fermentation, the focus ofthis project was to identify and compare these differences in the wine yeast Saccharomyces cerevisiae KI-Vll16 using cDNA microarray technology during the first five days of fermentation. Significant differences in yeast gene expression patterns between fermentation conditions were correlated to differences in nutrient utilization and metabolite production. Sugar consumption, nitrogen usage and metabolite levels were measured using enzyme assays and HPLC. Also, a small subset of differentially expressed genes was verified using Northern analysis. The high osmotic stress experienced by wine yeast throughout Icewine fermentation elicited changes in cell growth and metabolism correlating to several fermentation difficulties, including reduced biomass accumulation and fermentation rate. Genes associated with carbohydrate and nitrogen transport and metabolism were expressed at lower levels in Icewine juice fermenting cells compared to dilute juice fermenting cells. Osmotic stress, not nutrient availability during Icewine fermentation appears to impede sugar and nitrogen utilization. Previous studies have established that glycerol and acetic acid production are increased in yeast during Icewine fermentation. A gene encoding for a glycerollW symporter (STL1) was found to be highly expressed up to 25-fold in the i Icewine juice condition using microarray and Northern analysis. Active glycerol transport by yeast under hyperosmotic conditions to increase cytosolic glycerol concentration may contribute to reduced cell growth observed in the Icewine juice condition. Additionally, genes encoding for two acetyl CoA synthetase isoforms (ACSl and ACS2) were found to be highly expressed, 19- and II-fold respectively, in dilute juice fermenting cells relative to the Icewine juice condition. Therefore, decreased conversion of acetate to acetyl-CoA may contribute to increased acetic acid production during Icewine fermentation. These results further help to explain the response of wine yeast as they adapt to Icewine juice fermentation. ii

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell wall composition of Choanephora cucur - bitarum and the host-parasite interface, after infection with Piptocephalis virginiana , were examined in detail. The cell walls of C_. cucurbitarum were determined to be composed of chitin (17%), chitosan (28.4%), neutral sugars (7.2%),uronic acid (2.4%), proteins (8.2%) and lipids (13.8%). The structure of hyphal walls investigated by electron microscopy of shadowed replicas before and after alkali-acid hydrolysis, showed two distinct regions: microfibrillar and amorphous. The microfibrils which were composed of mainly chitin, were organized into two distinct layers: an outer, thicker layer of randomly orientated microfibrils and an inner, thin layer of parallel microfibrils.Electronmicrographs of the host-parasite interface of C_. cucurbitarum and the mycoparasite , P_. virginiana , 30 h following inoculation, showed that the sheath zone has a similar electron density to that of the host cell wall. The sheath was not present around the young (18 h old) haustorium. High-resolution autoradiographs of infected host hyphae showed that radioactive N-acetyl-D-glucosamine , a precursor of chitin, was incorporated preferentially in the host cell wall and sheath zone. Cell fractionation of label fed hyphae showed that 84% of the label was present in the cell wall and specifically in the chitin portion of the wall. The antifungal antibiotic, Polyoxin D, a specific inhibitor of the enzyme, chitin synthetase, suppressed the incorporation of the label in the cell wall and sheath zone and resulted in a decrease in electron density of the developing sheath. The significance of these results is discussed in the light of host resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyglutamine is a naturally occurring peptide found within several proteins in neuronal cells of the brain, and its aggregation has been implicated in several neurodegenerative diseases, including Huntington's disease. The resulting aggregates have been demonstrated to possess ~-sheet structure, and aggregation has been shown to start with a single misfolded peptide. The current project sought to computationally examine the structural tendencies of three mutant poly glutamine peptides that were studied experimentally, and found to aggregate with varying efficiencies. Low-energy structures were generated for each peptide by simulated annealing, and were analyzed quantitatively by various geometry- and energy-based methods. According to the results, the experimentally-observed inhibition of aggregation appears to be due to localized conformational restraint placed on the peptide backbone by inserted prolines, which in tum confines the peptide to native coil structure, discouraging transition towards the ~sheet structure required for aggregation. Such knowledge could prove quite useful to the design of future treatments for Huntington's and other related diseases.