4 resultados para Geochemistry--New Mexico.
em Brock University, Canada
Resumo:
Owing to the fact that low-Mg calcite fossil shells are so important in paleoceanographic research, 249 brachiopod, cement and matrix specimens from two neighboring localities (Jemez Springs and Battleship Rock), of the Upper Pennsylvanian Madera Formation were analyzed. Of which, about 86% of the Madera brachiopods are preserved in their pristine mineralogy, microstructure and geochemistry. Cement and matrix samples, in contrast, have been subjected to complete but variable post-deposition~1 alteration. It is confirmed that the stable isotope data of brachiopods are much better than that of matrix material in defining depositional parameters. Because there is no uniform or constant relationship between the two data bases (e.g., from 0.1 to 3.0%0 for 0180 and from 0.2 to 6.7%0 for 013C in this study), it is not possible to make corrections for the matrix data. Regarding the two stratigraphic sections, elemental and petrographic analyses suggest that Jemez Springs is closer to Penasco Uplift than Battleship Rock. Seawater at Jemez Springs is more aerobic, and the water chemistry is more influenced by continental sources than that at Battleship Rock. In addition, there is a relatively stronger dolomitization in the mid-section of the Battleship Rock. Results further suggest that no significant biogenic fractionation or vital effects occurred during their shell secretion, suggesting that the Madera brachiopods incorporated oxygen and carbon isotopes in equilibrium with the ambient seawater. This conclusion is not only drawn from the temporal and spatial analyses, but also supported by brachiopod inter-generic comparison (Composita and Neospirifer) and statistical analysis ( t-test).
Resumo:
Denver and Rio Grande Railway schedule, 1881.
Resumo:
North Amerlc8 W8S inundated by fJ major eplcontlnental sea during ihe C:retaceo.us Period. The sOljihw6rd transgression of th.e northern Boreal See along the ~\festern Interior Seaway resulted in a meetlng with the northward edv6nclng waters from the GUlf of Mexico (Obradovich and Cobban, 1975). Th1s link was 1n eXlstence by late Albien time and 6llowed for the comm1ngl1ng of the prol1ferous Arctic and Gulf rnar1ne faunas (F1g. 1). By early Campanlan time, there was a widening of B6ffln Bay wlth a slrnult8neous subsidence 1n the Arct1c Archlpelago and Sverdrup 6as1n (W11liam and Stelck, 1975). Williams and Burk (1964) found 6 break 1n the marines sedlmentatlon in the f1anltoba area, suggesting Bland corlnectlon from the Dlstrlct of Keewatln through eastern M6fl1toba to the lake Sl~perlor reglon, lmplying that the only dlrect connection between the Interlor Sea with Baffln Bay, was yia the Arct1c. This hiatus was also documented by Meek and Hayden (1861) ln the United states between the Niobrara and Pierre Format1ons. Jeletzky (1971) suggested that the retreat of the sea towards the east was by a serles of strong pulses resultlng in the regression of the Campanlan and M66str1chtlan seas. During ttle Cretaceous1 the r1s1ng Corl1111era caused the western shoreline of the Interlor Sea to migrate eastwards and the Cordillera'l detritus produced deltaic cornplexes from the Mackenzie Valley to Ne\N Mexlcoo The foreland basin was continually subslding and thls down\",arplng aided in the eastward m1gration of the western shorel1ne. Thls also lndicates that trle water 'tIes becom1ng deeper in the central Plains sect10n of the Seaway (Fig. 2).
Resumo:
Marine palynology and benthic and planktonic foraminiferal geochemistry are combined to reveal long- and short-term (Milankovitch-scale) paleoceanographic changes across the upper half of the Olduvai Subchron (ca. 1.86--1.77 Ma, lower Pleistocene) in DSDP Hole 603C from the lower New Jersey continental rise. Planktonic foraminiferal Mg/Ca ratios reveal annual sea-surface temperatures between 14.5° and 25°C, whereas modern values vary between 16° and 20°e. Despite evidence of downslope transport in much of the studied interval, dinoflagellate cyst and acritarch assemblages appear to reflect fluctuating temperate to subtropical water masses. These assemblages comprise both neritic and oceanic species, and are marked by a transition upsection from warm conditions, dominated by Lingulodinium machaerophorum, Polysphaeridium zoharyi and Cymatiosphaera? invaginata, to cooler conditions dominated by Filisphaera filifera. Combining dinoflagellate cyst proxies with planktonic foraminiferal geochemistry allows downslope transport events to be recognized during glacial episodes, and events dominated by intensified bottom-water circulation during interglacial episodes. Sixtytwo in-situ dinoflagellate cyst and acritarch taxa were recorded including several not previously described.