7 resultados para Gene Doping, Performance-Enhancement, Pragmatic Ethics
em Brock University, Canada
Resumo:
Gene doping is the most recent addition to the list of banned practices formulated by the World Anti-doping Agency. It is a subset of doping that utilizes the technology involved in gene therapy. The latter is still in the experimental phase but has the potential to be used as a type of medical treatment involving alterations of a patient‘s genes. I apply a pragmatic form of ethical inquiry to evaluate the application of this medical innovation in the context of sport for performance-enhancement purposes and how it will affect sport, the individual, society and humanity at large. I analyze the probable ethical implications that will emerge from such procedures in terms of values that lie at the heart of the major arguments offered by scholars on both affirmative and opposing sides of the debate on gene doping, namely fairness, autonomy and the conception of what it means to be human.
Resumo:
The use of certain perfonnance enhancing substances and methods has been defined as a major ethical breach by parties involved in the governance of highperfonnance sport. As a result, elite athletes worldwide are subject to rules and regulations set out in international and national anti-doping policies. Existing literature on the development of policies such as the World Anti-Doping Code and The Canadian antiDoping Program suggests a sport system in which athletes are rarely meaningfully involved in policy development (Houlihan, 2004a). Additionally, it is suggested that this lack of involvement is reflective of a similar lack of involvement in other areas of governance concerning athletes' lives. The purpose ofthis thesis is to examine the history and current state of athletes' involvement in the anti-doping policy process in Canada's high-perfonnance sport system. It includes discussion and analysis of recently conducted interviews with those involved in the policy process as well as an analysis of relevant documents, including anti-doping policies. The findings demonstrate that Canadian athletes have not been significantly involved in the creation of recently developed antidoping policies and that a re-evaluation of current policies is necessary to more fully recognize the reality of athletes' lives in Canada's high-perfonnance sport system and their rights within that system.
Resumo:
A feature-based fitness function is applied in a genetic programming system to synthesize stochastic gene regulatory network models whose behaviour is defined by a time course of protein expression levels. Typically, when targeting time series data, the fitness function is based on a sum-of-errors involving the values of the fluctuating signal. While this approach is successful in many instances, its performance can deteriorate in the presence of noise. This thesis explores a fitness measure determined from a set of statistical features characterizing the time series' sequence of values, rather than the actual values themselves. Through a series of experiments involving symbolic regression with added noise and gene regulatory network models based on the stochastic 'if-calculus, it is shown to successfully target oscillating and non-oscillating signals. This practical and versatile fitness function offers an alternate approach, worthy of consideration for use in algorithms that evaluate noisy or stochastic behaviour.
Resumo:
ABSTRACT The myosm regulatory light chain (RLC) of type II fibres is phosphorylated by Ca2+ -calmodulin dependent myosin light chain kinase (skMLCK) during muscular activation. The purpose of this study was to explore the effect of skMLCK gene ablation on the fatigability of mouse skeletal muscles during repetitive stimulation. The absence of myosin RLC phosphorylation in skMLCK knockout muscles attenuated contractile performance without a significant metabolic cost. Twitch force was potentiated to a greater extent in wildtype muscles until peak force had diminished to ~60% of baseline (37.2 ± 0.05% vs. 14.3 ± 0.02%). Despite no difference in peak force (Po) and shortening velocity (Vo), rate of force development (+dP/dt) and shortening-induced deactivation (SID) were almost two-fold greater in WT muscles. The present results demonstrate that myosin RLC phosphorylation may improve contractile performance during fatigue; providing a contractile advantage to working muscles and protecting against progressive fatigue.
Resumo:
Thesis (Ph.D.)--Brock University, 2010.
Resumo:
This thesis investigated the modulation of dynamic contractile function and energetics of work by posttetanic potentiation (PTP). Mechanical experiments were conducted in vitro using software-controlled protocols to stimulate/determine contractile function during ramp shortening, and muscles were frozen during parallel incubations for biochemical analysis. The central feature of this research was the comparison of fast hindlimb muscles from wildtype and skeletal myosin light chain kinase knockout (skMLCK-/-) mice that does not express the primary mechanism for PTP: myosin regulatory light chain (RLC) phosphorylation. In contrast to smooth/cardiac muscles where RLC phosphorylation is indispensable, its precise physiological role in skeletal muscle is unclear. It was initially determined that tetanic potentiation was shortening speed dependent, and this sensitivity of the PTP mechanism to muscle shortening extended the stimulation frequency domain over which PTP was manifest. Thus, the physiological utility of RLC phosphorylation to augment contractile function in vivo may be more extensive than previously considered. Subsequent experiments studied the contraction-type dependence for PTP and demonstrated that the enhancement of contractile function was dependent on force level. Surprisingly, in the absence of RLC phosphorylation, skMLCK-/- muscles exhibited significant concentric PTP; consequently, up to ~50% of the dynamic PTP response in wildtype muscle may be attributed to an alternate mechanism. When the interaction of PTP and the catchlike property (CLP) was examined, we determined that unlike the acute augmentation of peak force by the CLP, RLC phosphorylation produced a longer-lasting enhancement of force and work in the potentiated state. Nevertheless, despite the apparent interference between these mechanisms, both offer physiological utility and may be complementary in achieving optimal contractile function in vivo. Finally, when the energetic implications of PTP were explored, we determined that during a brief period of repetitive concentric activation, total work performed was ~60% greater in wildtype vs. skMLCK-/- muscles but there was no genotype difference in High-Energy Phosphate Consumption or Economy (i.e. HEPC: work). In summary, this thesis provides novel insight into the modulatory effects of PTP and RLC phosphorylation, and through the observation of alternative mechanisms for PTP we further develop our understanding of the history-dependence of fast skeletal muscle function.
Resumo:
Regulatory light chain (RLC) phosphorylation in fast twitch muscle is catalyzed by skeletal myosin light chain kinase (skMLCK), a reaction known to increase muscle force, work, and power. The purpose of this study was to explore the contribution of RLC phosphorylation on the power of mouse fast muscle during high frequency (100 Hz) concentric contractions. To determine peak power shortening ramps (1.05 to 0.90 Lo) were applied to Wildtype (WT) and skMLCK knockout (skMLCK-/-) EDL muscles at a range of shortening velocities between 0.05-0.65 of maximal shortening velocity (Vmax), before and after a conditioning stimulus (CS). As a result, mean power was increased to 1.28 ± 0.05 and 1.11 ± .05 of pre-CS values, when collapsed for shortening velocity in WT and skMLCK-/-, respectively (n = 10). In addition, fitting each data set to a second order polynomial revealed that WT mice had significantly higher peak power output (27.67 ± 1.12 W/ kg-1) than skMLCK-/- (25.97 ± 1.02 W/ kg-1), (p < .05). No significant differences in optimal velocity for peak power were found between conditions and genotypes (p > .05). Analysis with Urea Glycerol PAGE determined that RLC phosphate content had been elevated in WT muscles from 8 to 63 % while minimal changes were observed in skMLCK-/- muscles: 3 and 8 %, respectively. Therefore, the lack of stimulation induced increase in RLC phosphate content resulted in a ~40 % smaller enhancement of mean power in skMLCK-/-. The increase in power output in WT mice suggests that RLC phosphorylation is a major potentiating component required for achieving peak muscle performance during brief high frequency concentric contractions.