3 resultados para GEOLOGICAL TIME-SCALES
em Brock University, Canada
Resumo:
This study has three purposes: to establish a chronologically controlled vegetational history for a number of sites in south Southwestern Ontario; to utilize the resulting data to support and/or add to the current understanding of Quaternary geology and stratigraphy, and the glacial and postglacial history of the Great Lakes in south Southwestern Ontario; and to attempt to propose a possible explanation for the extinction of the mastodon in Southern Ontario. Palynological and geochronological analyses were conducted on material collected from eleven sites (east to west): Verbeke Mastodon Site, Woloshko Mastodon Site, Walker Pond II, Pond Mills I, Lake Hunger Bog, Bouckaert Site. Mabee Site, Cornell Bog. Colles Lake I, Folden Mastodon Site and Forest Pond. Individual geochronologically controlled (where possible) vegetational histories were reconstructed for each of the sites investigated. The results of the individual studies, when considered in overview. indicated the existance of an established closed boreal forest throughout south Southwestern Ontario by 10,000 years B.P. This evidence for a significant climatic change coincident throughout south Southwestern Ontario supports the proposed age of 10,000 years B.P. for the Pleistocene/Holocene Boundary (Terasmae, 1972). Remnant patches of 'open spruce parkland' persisted in small local 'wet' areas. It was in these areas that the mastodon was restricted during early Holocene time. With continued encroachment by the surrounding boreal forest, possibly speeded up by this browser's destructive feeding habits, the spruce enclaves shrank and the mastodon became extinct in south Southwestern Ontario. The results of this thesis basically support Dreimanis' (1967, 1968) proposed 'Environmental-Climatic' theory for mastodon extinction. It is suggested that increased dryness during the present interglacial compared to the climate of earlier interglacials may be the key to unravelling the problem of mastodon extinction in eastern North America.
Resumo:
Reprinted from Appleton's popular science monthly for June, 1899.
Resumo:
Second-rank tensor interactions, such as quadrupolar interactions between the spin- 1 deuterium nuclei and the electric field gradients created by chemical bonds, are affected by rapid random molecular motions that modulate the orientation of the molecule with respect to the external magnetic field. In biological and model membrane systems, where a distribution of dynamically averaged anisotropies (quadrupolar splittings, chemical shift anisotropies, etc.) is present and where, in addition, various parts of the sample may undergo a partial magnetic alignment, the numerical analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathematically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regularization) exist that allow for a simultaneous determination of both the anisotropy and orientational distributions. An additional complication arises when relaxation is taken into account. This work presents a method of obtaining the orientation dependence of the relaxation rates that can be used for the analysis of the molecular motions on a broad range of time scales. An arbitrary set of exponential decay rates is described by a three-term truncated Legendre polynomial expansion in the orientation dependence, as appropriate for a second-rank tensor interaction, and a linear approximation to the individual decay rates is made. Thus a severe numerical instability caused by the presence of noise in the experimental data is avoided. At the same time, enough flexibility in the inversion algorithm is retained to achieve a meaningful mapping from raw experimental data to a set of intermediate, model-free