3 resultados para Freezing semen

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monte Carlo Simulations were carried out using a nearest neighbour ferromagnetic XYmodel, on both 2-D and 3-D quasi-periodic lattices. In the case of 2-D, both the unfrustrated and frustrated XV-model were studied. For the unfrustrated 2-D XV-model, we have examined the magnetization, specific heat, linear susceptibility, helicity modulus and the derivative of the helicity modulus with respect to inverse temperature. The behaviour of all these quatities point to a Kosterlitz-Thouless transition occuring in temperature range Te == (1.0 -1.05) JlkB and with critical exponents that are consistent with previous results (obtained for crystalline lattices) . However, in the frustrated case, analysis of the spin glass susceptibility and EdwardsAnderson order parameter, in addition to the magnetization, specific heat and linear susceptibility, support a spin glass transition. In the case where the 'thin' rhombus is fully frustrated, a freezing transition occurs at Tf == 0.137 JlkB , which contradicts previous work suggesting the critical dimension of spin glasses to be de > 2 . In the 3-D systems, examination of the magnetization, specific heat and linear susceptibility reveal a conventional second order phase transition. Through a cumulant analysis and finite size scaling, a critical temperature of Te == (2.292 ± 0.003) JI kB and critical exponents of 0:' == 0.03 ± 0.03, f3 == 0.30 ± 0.01 and I == 1.31 ± 0.02 have been obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sperm competition is the competition for fertilizations between ejaculates, within a female, following multiple mating. There are four sperm utilization or precedence patterns: first male precedence, where the first male to mate fertilizes most of the eggs laid by a female; last male precedence, where the last male to mate fertilizes most of the eggs laid by a female; "all-or-none" pattern, where sperm from either male fertilizes all the eggs laid by a female but which male's sperm that is used is random; or sperm mixing, where sperm from each male is used equally in fertilizing eggs laid by a female. Intermediate utilization patterns are also possible. Sperm competition occurs in a wide variety of insect species as well as other animals. This study was undertaken to study sperm competition in the field cricket, Gryllus integer. Four experiments were conducted: a radiation and sterilization experiment, a diapause experiment, and 2 competition experiments. It was found that 7,000 rad of gamma radiation sterilized adult ~ integer males. There was no diapause in the laboratory in ~ integer eggs. In the first competition experiment, three groups of females were used: females mated with a normal male, then with a second normal male (NN group); females mated with a normal male, and then with a sterile male (NR group); and females mated with a sterile male, and then with a normal male (RN group). The results obtained from this experiment showed that the mean proportion of eggs hatched was significantly different between 3 groups of females, with the proportion hatched much greater in the NN group than in either the NR or RN groups. The pattern for the proportion of eggs hatched following a double mating most closely resembled a pattern expected if sperm mixing is occurring. Results obtained in the replicate competition experiment showed that the mean proportion of eggs hatched for the females in the NR group was significantly lower than the proportion hatched in the other two groups. This also supports a model of sperm mixing as a precedence pattern. Values calculated following Boorman and Parker (1976), for the proportion of eggs fertilized by the second male to mate following a double mating, were 0.57 in competition experiment 1 and 0.62 in the replicate. These values indicate that sperm mixing occurs in~ integer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of magnetic dilution and applied pressure on frustrated spinels GeNi2O4, GeCo2O4, and NiAl2O4 are reported. Dilution was achieved by substitution of Mg2+ in place of magnetically active Co2+ and Ni2+ ions. Large values of the percolation thresholds were found in GeNi(2-x)MgxO4. Specifically, pc1 = 0.74 and pc2 = 0.65 in the sub-networks associated with the triangular and kagome planes, respectively. This anomalous behaviour may be explained by the kagome and triangular planes behaving as coupled networks, also know as a network of networks. In simulations of coupled lattices that form a network of networks, similar anomalous percolation threshold values have been found. In addition, at dilution levels above x=0.30, there is a T^2 dependency in the magnetic heat capacity which may indicate two dimensional spin glass behaviour. Applied pressures in the range of 0 GPa to 1.2 GPa yield a slight decrease in ordering temperature for both the kagome and triangular planes. In GeCo(2-x)MgxO4, the long range magnetic order is more robust with a percolation threshold of pc=0.448. Similar to diluted nickel germanate, at low temperatures, a T^2 magnetic heat capacity contribution is present which indicates a shift from a 3D ordered state to a 2D spin glass state in the presence of increased dilution. Dynamic magnetic susceptibility data indicate a change from canonical spin glass to a cluster glass behaviour. In addition, there is a non-linear increase in ordering temperature with applied pressure in the range P = 0 to 1.0 GPa. A spin glass ground state was observed in Ni(1-x)MgxAl2O4 for (x=0 to 0.375). Analysis of dynamic magnetic susceptibility data yield a characteristic time of tau* = 1.0x10^(-13) s, which is indicative of canonical spin glass behaviour. This is further corroborated by the linear behaviour of the magnetic specific heat contribution. However, the increasing frequency dependence of the freezing temperature suggests a trend towards spin cluster glass formation.