8 resultados para Fractional-order control
em Brock University, Canada
Resumo:
Children were afforded the opportunity to control the order of repetitions for three novel spatiotemporal sequences. The following was predicted: a) children and adults in the self-regulated (SELF) groups would produce faster movement (MT) and reaction times (R T) and greater recall success (RS) during retention compared to the age-matched yoked (YOKE) groups; b) children would choose to switch sequences less often than adults; c) adults would produce faster MT and RT and greater RS than the children during acquisition and retention, independent of experimental group. During acquisition, no effects were seen for RS, however for MT and RT there was a main effect for age as well as block. During retention a main effect for practice condition was seen for RS and failed to reach statistical significance for MT and RT, thus partially supporting our first and second hypotheses. The third hypothesis was not supported.
Resumo:
Both learning and basic biological mechanisms have been shown to play a role in the control of protein int^e. It has previously been shown that rats can adapt their dietary selection patterns successfully in the face of changing macronutrient requirements and availability. In particular, it has been demonstrated that when access to dietary protein is restricted for a period of time, rats selectively increase their consumption of a proteincontaining diet when it becomes available. Furthermore, it has been shown that animals are able to associate various orosensory cues with a food's nutrient content. In addition to the role that learning plays in food intake, there are also various biological mechanisms that have been shown to be involved in the control of feeding behaviour. Numerous studies have documented that various hormones and neurotransmitter substances mediate food intake. One such hormone is growth hormone-releasing factor (GRF), a peptide that induces the release of growth hormone (GH) from the anterior pituitary gland. Recent research by Vaccarino and Dickson ( 1 994) suggests that GRF may stimulate food intake by acting as a neurotransmitter in the suprachiasmatic nucleus (SCN) and the adjacent medial preoptic area (MPOA). In particular, when GRF is injected directly into the SCN/MPOA, it has been shown to selectively enhance the intake of protein in both fooddeprived and sated rats. Thus, GRF may play a role in activating protein consumption generally, and when animals have a need for protein, GRF may serve to trigger proteinseeking behaviour. Although researchers have separately examined the role of learning and the central mechanisms involved in the control of protein selection, no one has yet attempted to bring together these two lines of study. Thus, the purpose of this study is to join these two parallel lines of research in order to further our understanding of mechanisms controlling protein selection. In order to ascertain the combined effects that GRF and learning have on protein intake several hypothesis were examined. One major hypothesis was that rats would successfully alter their dietary selection patterns in response to protein restriction. It was speculated that rats kept on a nutritionally complete maintenance diet (NCMD) would consume equal amount of the intermittently presented high protein conditioning diet (HPCD) and protein-free conditioning diet (PFCD). However, it was hypothesized that rats kept on a protein-free maintenance diet (PFMD) would selectively increase their intake of the HPCD. Another hypothesis was that rats would learn to associate a distinct marker flavour with the nutritional content of the diets. If an animal is able to make the association between a marker flavour and the nutrient content of the food, then it is hypothesized that they will consume more of a mixed diet (equal portion HPCD and PFCD) with the marker flavour that was previously paired with the HPCD (Mixednp-f) when kept on the PFMD. In addition, it was hypothesized that intracranial injection of GRF into the SCN/MPOA would result in a selective increase in HPCD as well as Mixednp-t consumption. Results demonstrated that rats did in fact selectively increase their consumption of the flavoured HPCD and Mixednp-f when kept on the NCMD. These findings indicate that the rats successfully learned about the nutrient content of the conditioning diets and were able to associate a distinct marker flavour with the nutrient content of the diets. However, the results failed to support previous findings that GRF increases protein intake. In contrast, the administration of GRF significantly reduced consumption of HPCD during the first hour of testing as compared to the no injection condition. In addition, no differences in the intake of the HPCD were found between the GRF and vehicle condition. Because GRF did not selectively increase HPCD consumption, it was not surprising that GRF also did not increase MixedHP-rintake. What was interesting was that administration of GRF and vehicle did not reduc^Mixednp-f consumption as it had decreased HPCD consumption.
Resumo:
Forty-four bacteriophage isolates of Erwinia amy/ovora, the causal agent of fire blight, were collected from sites in and around the Niagara Region of Southern Ontario in the summer of 1998. Phages were isolated only from sites where fire blight was present. Thirty-seven of these phages were isolated from the soil surrounding infected trees, with the remainder isolated from aerial plant tissue samples. A mixture of six E. amy/ovora bacterial host strains was used to enrich field samples in order to avoid the selection bias of a single-host system. Molecular characterization of the phages with a combination of peR and restriction endonuclease digestions showed that six distinct phage types were isolated. Ten phage isolates related to the previously characterized E. amy/ovora phage PEa1 were isolated, with some divergence of molecular markers between phages isolated from different sites. The host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amy/ovora strains, and that some types were able to lyse the epiphytic bacterium Pantoea agg/omerans. Biological control of E. amy/ovora by the bacteriophages was assessed in a bioassay using discs of immature pear fruit. Twenty-three phage isolates were able to significantly suppress the incidence of bacterial exudate on the pear disc surface. Quantification of the bacterial population remaining on the disc surface indicated that population reductions of up to 97% were obtainable by phage treatment, but that elimination of bacteria from the surface was not possible with this model system.
Resumo:
The purpose of the study was to investigate the effect of a 16 session stickhandling and puck control (SPC) off-ice training intervention on SPC skills and wrist shot performance variables. Eighteen female collegiate ice hockey players participated in a crossover design training intervention, whereby players were randomly assigned to two groups. Each group completed 16 SPC training sessions in two conditions [normal vision (NV) and restricted vision (RV)]. Measures obtained after the training intervention revealed significant improvements in SPC skills and wrist shot accuracy. Order of training condition did not reach significance, meaning that SPC improvement occurred as a result of total training volume as opposed to order of training condition. However, overall changes in the RV-NV condition revealed consistently higher effect sizes, meaning a greater improvement in performance. Therefore, support can be provided for this technical approach to SPC training and an alternative method of challenging SPC skills.
Resumo:
Cognitive control involves the ability to flexibly adjust cognitive processing in order to resist interference and promote goal-directed behaviour. Although frontal cortex is considered to be broadly involved in cognitive control, the mechanisms by which frontal brain areas implement control functions are unclear. Furthermore, aging is associated with reductions in the ability to implement control functions and questions remain as to whether unique cortical responses serve a compensatory role in maintaining maximal performance in later years. Described here are three studies in which electrophysiological data were recorded while participants performed modified versions of the standard Sternberg task. The goal was to determine how top-down control is implemented in younger adults and altered in aging. In study I, the effects of frequent stimulus repetition on the interference-related N450 were investigated in a Sternberg task with a small stimulus set (requiring extensive stimulus resampling) and a task with a large stimulus set (requiring no stimulus resampling).The data indicated that constant stimulus res amp ling required by employing small stimulus sets can undercut the effect of proactive interference on the N450. In study 2, younger and older adults were tested in a standard version of the Sternberg task to determine whether the unique frontal positivity, previously shown to predict memory impairment in older adults during a proactive interference task, would be associated with the improved performance when memory recognition could be aided by unambiguous stimulus familiarity. Here, results indicated that the frontal positivity was associated with poorer memory performance, replicating the effect observed in a more cognitively demanding task, and showing that stimulus familiarity does not mediate compensatory cortical activations in older adults. Although the frontal positivity could be interpreted to reflect maladaptive cortical activation, it may also reflect attempts at compensation that fail to fully ameliorate agerelated decline. Furthermore, the frontal positivity may be the result of older adults' reliance on late occurring, controlled processing in contrast to younger adults' ability to identify stimuli at very early stages of processing. In the final study, working memory load was manipulated in the proactive interference Sternberg task in order to investigate whether the N450 reflects simple interference detection, with little need for cognitive resources, or an active conflict resolution mechanism that requires executive resources to implement. Independent component analysis was used to isolate the effect of interference revealing that the canonical N450 was based on two dissociable cognitive control mechanisms: a left frontal negativity that reflects active interference resolution, , but requires executive resources to implement, and a right frontal negativity that reflects global response inhibition that can be relied on when executive resources are minimal but at the cost of a slowed response. Collectively, these studies advance understanding of the factors that influence younger and older adults' ability to satisfy goal-directed behavioural requirements in the face of interference and the effects of age-related cognitive decline.
Resumo:
Accuracy at reporting a second-target (T2) is reduced if it is presented within approximately 500 ms of the first target (T1) – an attentional blink (AB). Early models explained the AB in terms of attentional limitations creating a processing bottleneck such that T2 processing would be impaired while T1 processing was ongoing. Theoretical models of the AB have more recently been expanded to include the role of cognitive control. In this dissertation I propose that cognitive control, defined as the optimization of information processing in order to achieve goals, is maladapted to the dual-task conditions of the AB task in that cognitive control optimizes the T1 goal, due to its temporal proximity, at the cost of T2. I start with the concept that the role of cognitive control is to serve goals, and that how goals are conceived of and the degree of motivation associated with those goals will determine whether cognitive control will create the condition that cause the AB. This leads to the hypothesis that electrophysiological measures of cognitive control and the degree of attentional investment resulting from cognitive control modulate the AB and explain individual differences in the AB. In a series of four studies feedback-related N2 amplitude, (reflecting individual differences in the strength of cognitive control), and event-related and resting alpha frequency oscillatory activity (reflecting degree of attentional investment), are used to explain both intra- and inter-individual variability in performance on the AB task. Results supported the hypothesis that stronger cognitive control and greater attentional investment are associated with larger AB magnitudes. Attentional investment, as measured by alpha frequency oscillations, and cognitive control, as measured by the feedback-related N2, did not relate to each other as hypothesized. It is proposed that instead of a measure of attentional investment alone, alpha frequency oscillatory activity actually reflects control over information processing over time, in other words the timing of attention. With this conceptualization, various aspects of cognitive control, either related to the management of goals (feedback-related N2) or the management of attention over time to meet goals, explain variability in the AB.
Resumo:
In the early nineteenth century, a widespread outbreak of cholera occurred in continental Europe, eventually spreading to the British Isles. The disease subsequently spread to Canada as impoverished British immigrants seeking a better life arrived in the country. To help curb the spread of the disease, local Boards of Health were created.
Resumo:
In the early nineteenth century, a widespread outbreak of cholera occurred in continental Europe, eventually spreading to the British Isles. The disease subsequently spread to Canada as impoverished British immigrants seeking a better life arrived in the country. To help curb the spread of the disease, local Boards of Health were created.