10 resultados para Food Protein content

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surrounding lipid droplets in skeletal muscle are the perilipin (PLIN2-5) family of proteins, regulating lipid droplet metabolism. During exercise lipid droplets provide fatty acids to the mitochondria for oxidation while increasing their proximity to each other. Whether PLIN3 and PLIN5 associate with mitochondria following contraction has not been examined. To determine whether contraction altered mitochondrial PLIN3 and PLIN5 content, sedentary and endurance trained rats underwent acute contraction. The main outcomes are; 1) mitochondrial PLIN3 content is unaltered while mitochondrial PLIN5 content is increased following an acute contraction 2) mitochondrial PLIN3 content is higher in endurance trained rats when compared to sedentary and mitochondrial PLIN5 content is similar in both conditions 3) only PLIN5 mitochondrial content is increased similarly in both groups following acute contraction. This work highlights the dynamics of these two PLIN proteins, which may have roles not only on the lipid droplet but also on the mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first and rate-limiting step of lipolysis is the removal of the first fatty acid from a triglyceride molecule; it is catalyzed by adipose triglyceride lipase (ATGL). ATGL is co-activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 protein (G0S2). G0S2 has also recently been identified as a positive regulator of oxidative phosphorylation within the mitochondria. Previous research has demonstrated in cell culture, a dose dependent mechanism for inhibition by G0S2 on ATGL. However our data is not consistent with this hypothesis. There was no change in G0S2 protein content during an acute lipolytic inducing set of contractions in both whole muscle, and isolated mitochondria yet both ATGL and G0S2 increase following endurance training, in spite of the fact that there should be increased reliance on intramuscular lipolysis. Therefore, inhibition of ATGL by G0S2 appears to be regulated through more complicated intracellular or post-translation regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Contraction-mediated lipolysis increases the association of lipid droplets and mitochondria, indicating an important role in the passage of fatty acids from lipid droplets to mitochondria in skeletal muscle. PLIN3 and PLIN5 are of particular interest to the lipid droplet–mitochondria interaction because PLIN3 is able to move about within cells and PLIN5 associates with skeletal muscle mitochondria. This study primarily investigated: 1) if PLIN3 is detected in skeletal muscle mitochondrial fraction; and 2) if mitochondrial protein content of PLIN3 and/or PLIN5 changes following stimulated contraction. A secondary aim was to determine if PLIN3 and PLIN5 associate and whether this changes following contraction. Male Long Evans rats (n = 21;age, 52 days; weight = 317 6 g) underwent 30 min of hindlimb stimulation (10 msec impulses, 100 Hz/3 sec at 10–20 V; train duration 100 msec). Contraction induced a ~50% reduction in intramuscular lipid content measured by oil red-O staining of red gastrocnemius muscle. Mitochondria were isolated from red gastrocnemius muscle by differential centrifugation and proteins were detected by western blotting. Mitochondrial PLIN5 content was ~1.6-fold higher following 30 min of contraction and PLIN3 content was detected in the mitochondrial fraction, and unchanged following contraction. An association between PLIN3 and PLIN5 was observed and remained unaltered following contraction. PLIN5 may play a role in mitochondria during lipolysis, which is consistent with a role in facilitating/regulating mitochondrial fatty acid oxidation. PLIN3 and PLIN5 may be working together on the lipid droplet and mitochondria during contraction-induced lipolysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of age on the structure and composition of isolated and purified cell walls from cultures of Choanephora cucurbitarum was investigated by microchemical analyses, visible and infrared spectrophotometry, x-ray diffractometry and electron microscopy. Qualitative evaluation revealed the presence of lipids, proteins, neutral sugars, strong alkali soluble sugars, chitin, chitosan and uronic acids in the cell walls of both the 1 and 7 day old cultures. As the mycelium aged, there was a slight but statistically significant increase in the protein content, and a pronounced rise in the chitin and neutral sugar constituents of the cell walls. Conversely, the decrease in the chitosan content during this period had the net effect of altering the chitin: chitosan ratio from near unity in the younger cultures, to a 2:1 ratio in the 7 day old cell wall samples. Glutaraldehyde-osmium fixed thin sections of the 1 day old vegetative hyphae of £. curbitarum revealed the presence of a monolayered cell wall, which upon aging became bilayered. Replicas of acid hydrolysed cell walls demonstrated that both the 1 and 7 day old samples possessed an outer layer which was composed of finely granular amorphous material and randomly distributed microfibrils. The deposition of an inner secondary layer composed of parallel oriented microfibrils in the older hypha was correlated with an increase in the chitin content in the cell wall. The significance of these results with respect to the intimate relationship between composition and structure is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time course for the reversal of the adaptive increase in pyruvate dehydrogenase kinase (PDK) activity following a 6d high fat diet (HP: 4.2 ± 0.2 % carbohydrate; 75.6 ± 0.4 % fat; 19.5 ± 0.8 % protein) was investigated in human skeletal muscle (vastus lateralis). HF feeding increased PDK activity by 44% (from 0.081 ± 0.025 min"' to 0.247 ± 0.025 mm\p < 0.05). Following carbohydrate re-feeding, (88% carbohydrate; 5% fat; 7% protein), PDK activity had returned to baseline (0.111 ± 0.014 min"') within 3h of re-feeding. The active fraction of pyruvate dehydrognease (PDHa) was depressed following 6d of the HF diet (from 0.89 ± 0.21 mmol/min/kg WW to 0.32 ± 0.05 mmol/min/kg ww,p <0.05) and increased to pre-HF levels by 45 min of post re-feeding (0.74 ±0.19 mmol/min/kg ww) and remained elevated for 3h. Western blotting analysis of the PDK isoforms, PDK4 and PDK2, revealed a 31% increase in PDK4 protein content following the HF diet, with no change in PDK2 protein. This adaptive increase in PDK4 protein content was reversed with carbohydrate re-feeding. It was concluded that the adaptive up-regulation in PDK activity and PDK4 protein content was fiilly reversed by 3h following carbohydrate re-feeding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PD H is deactivated by a set of PD H kinases (PD K 1-4) with PDK2 and 4 being the predominant isoforms in skeletal muscle. PDK2 is highly sensitive to pyruvate inhibition, and is the most abundant isoform, while PDKI and 4 protein content are normally lower. This study examined the PDK isoform content and PDHa activation in muscle at rest and 10 and 40 Hz stimulation from PDK2 knockout (PDK2KO) mice to delineate the role of PDK2 in activating the PDH complex during low and moderate intensity muscle contraction. PDHa activity was lower in PDK2KO mice during contraction while total PDK actitvity was -4 fold lower. PDK4 protein was not different, however PDKI partially compensated for the lack of PDK2 and was -56% higher than WT. PDKI is a very potent inhibitor of the PDH complex due to its phosphorylation site specificity and allosteric regulation. These results suggest that the site specificity and allosteric regulatory properties of the individual PDK isoforms are more important than total PDK activity in determining transformation of the complex and PDHa activity during acute muscle contraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project aimed to determine the protein prof i les and concent rat ion in honeys, ef fect of storage condi t ions on the protein content and the interact ion between proteins and polyphenols. Thi r teen honeys f rom di f ferent botanical or igins were analyzed for thei r protein prof i les using SDS-PAGE, protein concent rat ion and phenol ic content , using the Pierce Protein Assay and Fol in-Ciocal teau methods, respectively. Protein-polyphenol interact ions were analyzed by a combinat ion of the ext ract ion of honeys wi th solvents of di f ferent polar i t ies fol lowed by LCjMS analysis of the obtained f ract ions. Results demonst rated a di f ferent protein content in the tested honeys, wi th buckwheat honey possessing the highest protein concent rat ion. We have shown that the reduct ion of proteins dur ing honey storage was caused, partially, by the protein complexat ion wi th phenolics. The LCjMS analysis of the peak elut ing at retent ion t ime of 10 to 14 min demonst rated that these phenolics included f lavonoids such as Pinobanksin, Pinobanksin acetate, Apigenin, Kaemferol and Myricetin and also cinnamic acid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyruvate dehydrogenase phosphatase (PDP) regulates carbohydrate oxidation through the pyruvate dehydrogenase (PDH) complex. PDP activates PDH, enabling increased carbohydrate flux towards oxidative energy production. In culture myoblasts, both PDP1 and PDP2 undergo covalent activation in response to insulin–stimulation by protein kinase C delta (PKCδ). Our objective was to examine the effect of insulin on PDP phosphorylation and PDH activation in skeletal muscle. Intact rat extensor digitorum longus muscles were incubated (oxygenated at 25°C, 1g of tension) for 30min in basal or insulin–stimulated (10 mU/mL) media. PDH activity increased 58% following stimulation, (p=0.057, n=11). Serine phosphorylation of PDP1 (p=0.047) and PDP2 (p=0.006) increased by 29% and 48%, respectively (n=8), and mitochondrial PKCδ protein content was enriched by 45% in response to stimulation (p=0.0009, n=8). These data suggest that the insulin–stimulated increase in PDH activity in whole tissue is mediated through mitochondrial migration of PKCδ and subsequent PDP phosphorylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

University, 2006 Dr. Sandra J. Peters Pyruvate dehydrogenase (PDH) catalyses the decarboxylation of pyruvate, to form acetyl-CoA. PDH activity is down-regulated by intrinsic PDH kinases (predominantly PDK2 and PDK4 isoforms), but the understanding of the PDK isoform distribution and adaptation to nutritional stresses has been restricted to mixed mitochondrial populations, and not delineated between subsarcolemmal (SS) and intermyofibrillar (IMF) subpopulations. SS and IMF mitochondria exhibit distinct morphological and biochemical properties; however the functional differences are not well understood. This study investigated the effect of fed (FED) versus 48 h total foodrestriction (FR) on rat red gastrocnemius muscle PDK2 and 4 isoform content in SS and IMF mitochondria. PDK4 content was ~3-5 fold higher in SS mitochondria compared to IMF (p=0.001), and increased with FR -3-4- fold in both subpopulations (p<0.001). PDK2 was -2.5-4 fold higher in SS mitochondria compared to IMF (p=0.001), but PDK2 was unaltered with FR. Citrate synthase activity (|imol/min/mg mitochondrial protein) was not different between either subpopulation. As well there were no significant differences between mitochondrial subpopulations in PDH complex components in both fed and FR states. These results demonstrate that there is a markedly higher content of both PDK isofonns in SS compared to IMF mitochondria. Although PDK2 does not increase in either subpopulation in response to FR, PDK4 increases to a similar extent in both SS and IMF after 48 h food-restriction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both learning and basic biological mechanisms have been shown to play a role in the control of protein int^e. It has previously been shown that rats can adapt their dietary selection patterns successfully in the face of changing macronutrient requirements and availability. In particular, it has been demonstrated that when access to dietary protein is restricted for a period of time, rats selectively increase their consumption of a proteincontaining diet when it becomes available. Furthermore, it has been shown that animals are able to associate various orosensory cues with a food's nutrient content. In addition to the role that learning plays in food intake, there are also various biological mechanisms that have been shown to be involved in the control of feeding behaviour. Numerous studies have documented that various hormones and neurotransmitter substances mediate food intake. One such hormone is growth hormone-releasing factor (GRF), a peptide that induces the release of growth hormone (GH) from the anterior pituitary gland. Recent research by Vaccarino and Dickson ( 1 994) suggests that GRF may stimulate food intake by acting as a neurotransmitter in the suprachiasmatic nucleus (SCN) and the adjacent medial preoptic area (MPOA). In particular, when GRF is injected directly into the SCN/MPOA, it has been shown to selectively enhance the intake of protein in both fooddeprived and sated rats. Thus, GRF may play a role in activating protein consumption generally, and when animals have a need for protein, GRF may serve to trigger proteinseeking behaviour. Although researchers have separately examined the role of learning and the central mechanisms involved in the control of protein selection, no one has yet attempted to bring together these two lines of study. Thus, the purpose of this study is to join these two parallel lines of research in order to further our understanding of mechanisms controlling protein selection. In order to ascertain the combined effects that GRF and learning have on protein intake several hypothesis were examined. One major hypothesis was that rats would successfully alter their dietary selection patterns in response to protein restriction. It was speculated that rats kept on a nutritionally complete maintenance diet (NCMD) would consume equal amount of the intermittently presented high protein conditioning diet (HPCD) and protein-free conditioning diet (PFCD). However, it was hypothesized that rats kept on a protein-free maintenance diet (PFMD) would selectively increase their intake of the HPCD. Another hypothesis was that rats would learn to associate a distinct marker flavour with the nutritional content of the diets. If an animal is able to make the association between a marker flavour and the nutrient content of the food, then it is hypothesized that they will consume more of a mixed diet (equal portion HPCD and PFCD) with the marker flavour that was previously paired with the HPCD (Mixednp-f) when kept on the PFMD. In addition, it was hypothesized that intracranial injection of GRF into the SCN/MPOA would result in a selective increase in HPCD as well as Mixednp-t consumption. Results demonstrated that rats did in fact selectively increase their consumption of the flavoured HPCD and Mixednp-f when kept on the NCMD. These findings indicate that the rats successfully learned about the nutrient content of the conditioning diets and were able to associate a distinct marker flavour with the nutrient content of the diets. However, the results failed to support previous findings that GRF increases protein intake. In contrast, the administration of GRF significantly reduced consumption of HPCD during the first hour of testing as compared to the no injection condition. In addition, no differences in the intake of the HPCD were found between the GRF and vehicle condition. Because GRF did not selectively increase HPCD consumption, it was not surprising that GRF also did not increase MixedHP-rintake. What was interesting was that administration of GRF and vehicle did not reduc^Mixednp-f consumption as it had decreased HPCD consumption.