5 resultados para Fluctuating Temperatures

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although it is widely assumed that temperature affects pollutant toxicity, few studies have actually investigated this relationship. Moreover, such research as has been done has involved constant temperatures; circumstances which are rarely, if ever, actually experienced by north temperate, littoral zone cyprinid species. To investigate the effects of temperature regime on nickel toxicity in goldfish (Carassius auratus L.), 96- and 240-h LCSO values for the heavy metal pollutant, nickel (NiCI2.6H20), were initially determined at 2DoC (22.8 mg/L and 14.7 mg/L in artificially softened water). Constant temperature bioassays at 10°C, 20°C and 30°C were conducted at each of 0, 240-h and 96-h LCSO nickel concentrations for 240 hours. In order to determine the effects of temperature variation during nickel exposure it was imperative that the effects of a single temperature change be investigated before addressing more complex regimes. Single temperature changes of + 10°C or -10°C were imposed at rates of 2°C/h following exposures of between 24 hand 216 h. The effects of a single temperature change on mortality, and duration of toxicant exposure at high and low temperatures were evaluated. The effects of fluctuating temperatures during exposure were investigated through two regimes. The first set of bioassays imposed a sinewave diurnal cycle temperature (20.±.1DOC) throughout the 10 day exposure to 240-h LeSO Ni. The second set of investigations approximated cyprinid movement through the littoral zone by imposing directionally random temperature changes (±2°C at 2-h intervals), between extremes of 10° and 30°C, at 240-h LC50 Ni. Body size (i.e., total length, fork length, and weight) and exposure time were recorded for all fish mortalities. Cumulative mortality curves under constant temperature regimes indicated significantly higher mortality as temperature and nickel concentration were increased. At 1DOC no significant differences in mortality curves were evident in relation to low and high nickel test concentrations (Le., 16 mg/L and 20 mg/L). However at 20°C and 30°C significantly higher mortality was experienced in animals exposed to 20 mg/L Ni. Mortality at constant 10°C was significantly lower than at 30°C with 16 mg/L and was significantly loWer than each of 2DoC and 39°C tanks at 20 mg/L Ni exposure. A single temperature shift from 20°C to 1DoC resulted in a significant decrease in mortality rate and conversely, a single temperature shift from 20°C to 30°C resulted in a significant increase in mortality rate. Rates of mortality recorded during these single temperature shift assays were significantly different from mortality rates obtained under constant temperature assay conditions. Increased Ni exposure duration at higher temperatures resulted in highest mortality. Diurnally cycling temperature bioassays produced cumulative mortality curves approximating constant 20°C curves, with increased mortality evident after peaks in the temperature cycle. Randomly fluctuating temperature regime mortality curves also resembled constant 20°C tanks with mortalities after high temperature exposures (25°C - 30°C). Some test animals survived in all assays with the exception of the 30°C assays, with highest survival associated with low temperature and low Ni concentration. Post-exposure mortality occurred most frequently in individuals which had experienced high Ni concentrations and high temperatures during assays. Additional temperature stress imposed 2 - 12 weeks post exposure resulted in a single death out of 116 individuals suggesting that survivors are capable of surviving subsequent temperature stresses. These investigations suggest that temperature significantly and markedly affects acute nickel toxicity under both constant and fluctuating temperature regimes and plays a role in post exposure mortality and subsequent stress response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four groups of rainbow trout, Salmo gairdneri, were acclimated to 2°, 10°, and 18°e, and to a diurnal temperature cycle (100 ± 4°C). To evaluate the influence of cycling temperatures in terms of an immediate as opposed to acclimatory response various ventilatory-cardiovascular rate functions were observed for trout, either acclimated to cycling temperatures or acclimated to constant temperatures and exposed to a diurnal temperature cycle for the first time (10° ± 4°C for trout acclimated to 10°C; 18°+ 4°C for trout acclimated to l8°e). Gill resistance and the cardiac to ventilatory rate ratio were then calculated. Following a post preparatory recovery period of 36 hr, measurements were made over a 48 hour period with the first 24 hours being at constant temperature in the case of statically-acclimated fish followed by 24 hours under cyclic temperature conditions. Trout exhibited marked changes in oxygen consumption (Vo ) with temp- 2 erature both between acclimation groups, and in response to the diurnal temperature cycle. This increase in oxygen uptake appears to have been achieved by adjustment of ventilatory and, to some extent, cardiovascular activity. Trout exhibited significant changes in ventilatory rate (VR), stroke volume (Vsv), and flow (VG) in response to temperature. Marked changes in cardiac rate were also observed. These findings are discussed in relation to their importance in convective oxygen transport via water and blood at the gills and tissues. Trout also exhibited marked changes in pressure waveforms associated with the action of the resp; ratory pumps with temperature. Mean differenti a 1 pressure increased with temperature as did gill resistance and utilization. This data is discussed in relation to its importance in diffusive oxygen transport and the conditions for gas exchange at the gills. With one exception, rainbow trout were able to respond to changes in oxygen demand and availability associated with changes in temperature by means of adjustments in ventilation, and possibly pafusion, and the conditions for gas exchange at the gills. Trout acclimated to 18°C, however, and exposed to high cyclic temperatures, showed signs of the ventilatory and cardiovascular distress problems commonly associated with low circulating levels of oxygen in the blood. It appears these trout were unable to fully meet the oxygen requirements associated with c~ling temperatures above 18°C. These findings were discussed in relation to possible limitations in the cardiovascular-ventilatory response at high temperatures. The response of trout acclimated to cycling temperatures was generally similar to that for trout acclimated to constant temperatures and exposed to cycling temperatures for the first time. This result suggested that both groups of fish may have been acclimated to a similar thermal range, regardless of the acclimation regime employed. Such a phenomenon would allow trout of either acclimation group to respond equally well to the imposed temperature cycle. Rainbow trout showed no evidence of significant diurnal rhythm in any parameters observed at constant temperatures (2°, 10°, and 18° C), and under a 12/12 light-dark photoperiod regime. This was not taken to indicate an absence of circadian rhythms in these trout, but rather a deficiency in the recording methods used in the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a diurnal sine-wave temperature cycle (250 +- 5° C) on the wa terI-e etc r o1 yt est a t us 0 f gol df1' Sh , Carassius auratus, was assessed through determination of Na+, K+, Mg2+, Ca2+, Cl- and water content in plasma, Red blood cells and muscle tissue. Animals were also acclimated to o 0 0 static temperatures (20 C, 25 c, 30 C) corresponding to the high, low and mid-ooint temperatures of the cycle. All groups were sampled at 03:00, 09:00, 15:00 and 21:00 hr. Hemoglobin content and packed cell volume, as well as electrolyte and 'water levels were determined for each animal and red cell ion concentrations and ion : hemoglobin ratios estimated. Cycled animals were distinct from those at constant temperatures in several respects. Hematological parameters were elevated above those of animals at constant temperature and were, on a diurnal basis, more stable. Red blood cell electrolyte levels varied in an adaptively appropriate fashion to cycle temperatures. This was not the case in the constant temperature groups_ Under the cycling regime, plasma ion levels were more diurnally stable than those of constant temperature fish. Although muscle parameters in cycled fish exhibited more fluctuation than was observed in plasma, these also tended to be relatively more stable than was the caseErythrocytic data are discussed in terms of their effects on hemoglobin-oxygen affinity while plasma and muscle observations were considered from the standpoint of overall water-electrolyte balance. In general, cycled fish appeared to be capable of stabilizing overall body fluid composition, while simultaneously effecting adaptively-appropriate modifications in the erythrocytic ionic microenvironment of hemoglobin. The sometimes marked diurnal variability of water-electrolyte status in animals held at constant temperature as opposed to the conservation of cycled fish suggests that this species is, in some fashion, programmed for regulation in a thermally-fluctuating environment. If this interpretation is valid and a phenomenon of general occurrence, some earlier studies involving constant acclimation of eurythermal species normally occupying habitats which vary in temperature on a daily basis may require reconsideration. at constant temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basal body temperature (BBT) and thermoeffector thresholds increase following ovulation in many women. This study investigated if solely central thermoregulatory alterations are responsible. Seven females in a non-contraceptive group (NCG) were compared with 5 monophasic contraceptive users (HCG) on separate accounts: pre-ovulation (Trial I; d 2-5) and post-ovulation (Trial 2; 4-8 d post-positive ovulation) for NCG, and active phase for HCG (d 2-5, d 18-21). During immersion in 28°C water to the axilla, participants exercised for 20-30 min on an underwater ergometer. After steadily sweating, immersion continued until metabolism increased two-fold due to shivering. Rectal (Tre) BBT was not different between trials for neither NCG (1: 37.34±0.16°C; 2: 37.35±0.27°C) nor HCG. At exercise termination, Tre forehead sweating cessation increased (P<0.05) in trial 2 irrespective of group (1: 37.55±0.39°C; 2: 37.90±0,46°C). Tre shivering onset did not increase (P>0.05) in trial 2 (1: 36.91±0.50°C; 2: 37.07±0,45°C). The widths of the interthreshold zone increased (P<0.05) in trial 2 (1: 0.64±0.22°C; 2: 0.82±0.37°C) due to the increased sweating threshold only. HCG cooled quicker (1: -l.15±0,43°C; 2: -1.00±0.50°C) than NCG participants (1: - 0.58±0.22°C; 2: -0.52±O.29°C), and tympanic (Tty) sweat thresholds were significantly (P<0.05) decreased (1: 34.76±0.54°C; 2: 35.39±0.61°C) versus NCG (l: 35.57±0.77°C; 2: 35.89±1.04°C). Lastly, Tre and Tty thresholds were significantly different (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine palynology and benthic and planktonic foraminiferal geochemistry are combined to reveal long- and short-term (Milankovitch-scale) paleoceanographic changes across the upper half of the Olduvai Subchron (ca. 1.86--1.77 Ma, lower Pleistocene) in DSDP Hole 603C from the lower New Jersey continental rise. Planktonic foraminiferal Mg/Ca ratios reveal annual sea-surface temperatures between 14.5° and 25°C, whereas modern values vary between 16° and 20°e. Despite evidence of downslope transport in much of the studied interval, dinoflagellate cyst and acritarch assemblages appear to reflect fluctuating temperate to subtropical water masses. These assemblages comprise both neritic and oceanic species, and are marked by a transition upsection from warm conditions, dominated by Lingulodinium machaerophorum, Polysphaeridium zoharyi and Cymatiosphaera? invaginata, to cooler conditions dominated by Filisphaera filifera. Combining dinoflagellate cyst proxies with planktonic foraminiferal geochemistry allows downslope transport events to be recognized during glacial episodes, and events dominated by intensified bottom-water circulation during interglacial episodes. Sixtytwo in-situ dinoflagellate cyst and acritarch taxa were recorded including several not previously described.