5 resultados para Fitting parameters
em Brock University, Canada
Resumo:
The enigmatic heavy fermion URu2Si2, which is the subject of this thesis, has attracted intensive theoretical and experimental research since 1984 when it was firstly reported by Schlabitz et al. at a conference [1]. The previous bulk property measurements clearly showed that one second order phase transition occurs at the Hidden Order temperature THO ≈ 17.5 K and another second order phase transition, the superconducting transition, occurs at Tc ≈ 1 K. Though twenty eight years have passed, the mechanisms behind these two phase transitions are still not clear to researchers. Perfect crystals do not exist. Different kinds of crystal defects can have considerable effects on the crystalline properties. Some of these defects can be eliminated, and hence the crystalline quality improved, by annealing. Previous publications showed that some bulk properties of URu2Si2 exhibited significant differences between as-grown samples and annealed samples. The present study shows that the annealing of URu2Si2 has some considerable effects on the resistivity and the DC magnetization. The effects of annealing on the resistivity are characterized by examining how the Residual Resistivity Ratio (RRR), the fitting parameters to an expression for the temperature dependence of the resistivity, the temperatures of the local maximum and local minimum of the resistivity at the Hidden Order phase transition and the Hidden Order Transition Width ∆THO change after annealing. The plots of one key fitting parameter, the onset temperature of the Hidden Order transition and ∆THO vs RRR are compared with those of Matsuda et al. [2]. Different media used to mount samples have some impact on how effectively the samples are cooled because the media have different thermal conductivity. The DC magnetization around the superconducting transition is presented for one unannealed sample under fields of 25 Oe and 50 Oe and one annealed sample under fields of 0 Oe and 25 Oe. The DC field dependent magnetization of the annealed Sample1-1 shows a typical field dependence of a Type-II superconductor. The lower critical field Hc1 is relatively high, which may be due to flux pinning by the crystal defects.
Resumo:
This investigation comprises a comparison of experimental and theoretical dechanneling of MeV protons in copper single crystals. Dechanneling results when an ion's transverse energy increases to the value where the ion can undergo small impact parameter collisions with individual atoms. Depth dependent dechanneling rates were determined as functions of lattice temperature, ion beam energy and crystal axis orientation. Ion beam energies were IMeV and 2MeV,temperatures ranged from 35 K to 280 K and the experiment was carried out along both the (lOa) and <110) axes. Experimental data took the form of aligned and random Rutherford backscattered energy spectra. Dechanneling rates were extracted from these spectra using a single scattering theory that took explicit account of the different stopping powers experienced by channeled and dechanneled ions and also included a correction factor to take into account multiple scattering effects along the ion's trajectory. The assumption of statistical equilibrium and small angle scattering of the channeled ions allows a description of dechanneling in terms of the solution of a diffusion like equation which contains a so called diffusion function. The diffusion function is shown to be related to the increase in average transverse energy. Theoretical treatments of increase in average transverse energy due to collisions of projectiles with channel electrons and thermal perturbations in the lattice potential are reviewed. Using the diffusion equation and the electron density in the channel centre as a fitting parameter dechanneling rates are extracted. Excellent agreement between theory and experiment has been demonstrated. Electron densities determined in the fitting procedure appear to be realistic. The surface parameters show themselves to be good indicators of the quality of the crystal.
Resumo:
Breeding parameters of Great Cormorants (PkaZac/iOCOfiCLX CCUibo dCUtbo) and Double-crested Cormorants (P. CLU/uXuA CMJhLtllb) were examined at two mixed species colonies at Cape Tryon and Durell Point, Prince Edward Island from 1976 to 1978. Differential access to nests at the two colony sites resulted in more complete demographic data for P. CCUibo than for P. CLUJiituA. In 1911j P. CCtfibo was present at both colonies by 21 March, whereas P. auAAJtuA did not return until 1 April and 16 April at Cape Tryon and Durell Point, respectively. Differences in the arrival chronology by individuals of each species and differences in the time of nest site occupation according to age, are suggested as factors influencing the nest site distribution of P. CXUtbo and P. aiVtituA at Cape Tryon. Forty-eight P. dOJtbo chicks banded at the Durell Point colony between 19 74 and 19 76 returned there to nest as two- to four-year olds in 19 77 and 19 78. Unmarked individuals with clutch-starts in April were likely greater than four years old as all marked two to four-year olds (with one possible exception) in 19 77 and 1978 had clutch-starts in May and June. Seasonal variation in the breeding success of P. dOJibo individuals was examined at Durell Point in 1977. Mean clutch-size, hatching success and fledging success exhibited a seasonal decline. Four- and 5-egg clutches represented the majority (75%) of all P. CCUibo clutches at Durell Point in 1977 and had the highest reproductive success (0.48 and 0.43 chicks fledged per egg laid respectively). Smaller clutches produced small broods with significantly higher chick mortality while larger clutches suffered high egg loss prior to clutch completion.
Resumo:
Order parameter profiles extracted from the NMR spectra of model membranes are a valuable source of information about their structure and molecular motions. To al1alyze powder spectra the de-Pake-ing (numerical deconvolution) ~echnique can be used, but it assumes a random (spherical) dist.ribution of orientations in the sample. Multilamellar vesicles are known to deform and orient in the strong magnetic fields of NMR magnets, producing non-spherical orientation distributions. A recently developed technique for simultaneously extracting the anisotropies of the system as well as the orientation distributions is applied to the analysis of partially magnetically oriented 31p NMR spectra of phospholipids. A mixture of synthetic lipids, POPE and POPG, is analyzed to measure distortion of multilamellar vesicles in a magnetic field. In the analysis three models describing the shape of the distorted vesicles are examined. Ellipsoids of rotation with a semiaxis ratio of about 1.14 are found to provide a good approximation of the shape of the distorted vesicles. This is in reasonable agreement with published experimental work. All three models yield clearly non-spherical orientational distributions, as well as a precise measure of the anisotropy of the chemical shift. Noise in the experimental data prevented the analysis from concluding which of the three models is the best approximation. A discretization scheme for finding stability in the algorithm is outlined
Resumo:
Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.