6 resultados para Finite Automata

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency dependence of the electron-spin fluctuation spectrum, P(Q), is calculated in the finite bandwidth model. We find that for Pd, which has a nearly full d-band, the magnitude, the range, and the peak frequency of P(Q) are greatly reduced from those in the standard spin fluctuation theory. The electron self-energy due to spin fluctuations is calculated within the finite bandwidth model. Vertex corrections are examined, and we find that Migdal's theorem is valid for spin fluctuations in the nearly full band. The conductance of a normal metal-insulator-normal metal tunnel junction is examined when spin fluctuations are present in one electrode. We find that for the nearly full band, the momentum independent self-energy due to spin fluctuations enters the expression for the tunneling conductance with approximately the same weight as the self-energy due to phonons. The effect of spin fluctuations on the tunneling conductance is slight within the finite bandwidth model for Pd. The effect of spin fluctuations on the tunneling conductance of a metal with a less full d-band than Pd may be more pronounced. However, in this case the tunneling conductance is not simply proportional to the self-energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate some open problems in the area of combinatorial number theory referred to as zero-sum theory. A zero-sequence in a finite cyclic group G is said to have the basic property if it is equivalent under group automorphism to one which has sum precisely IGI when this sum is viewed as an integer. This thesis investigates two major problems, the first of which is referred to as the basic pair problem. This problem seeks to determine conditions for which every zero-sequence of a given length in a finite abelian group has the basic property. We resolve an open problem regarding basic pairs in cyclic groups by demonstrating that every sequence of length four in Zp has the basic property, and we conjecture on the complete solution of this problem. The second problem is a 1988 conjecture of Kleitman and Lemke, part of which claims that every sequence of length n in Zn has a subsequence with the basic property. If one considers the special case where n is an odd integer we believe this conjecture to hold true. We verify this is the case for all prime integers less than 40, and all odd integers less than 26. In addition, we resolve the Kleitman-Lemke conjecture for general n in the negative. That is, we demonstrate a sequence in any finite abelian group isomorphic to Z2p (for p ~ 11 a prime) containing no subsequence with the basic property. These results, as well as the results found along the way, contribute to many other problems in zero-sum theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioinformatics applies computers to problems in molecular biology. Previous research has not addressed edit metric decoders. Decoders for quaternary edit metric codes are finding use in bioinformatics problems with applications to DNA. By using side effect machines we hope to be able to provide efficient decoding algorithms for this open problem. Two ideas for decoding algorithms are presented and examined. Both decoders use Side Effect Machines(SEMs) which are generalizations of finite state automata. Single Classifier Machines(SCMs) use a single side effect machine to classify all words within a code. Locking Side Effect Machines(LSEMs) use multiple side effect machines to create a tree structure of subclassification. The goal is to examine these techniques and provide new decoders for existing codes. Presented are ideas for best practices for the creation of these two types of new edit metric decoders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relation algebras and categories of relations in particular have proven to be extremely useful as a fundamental tool in mathematics and computer science. Since relation algebras are Boolean algebras with some well-behaved operations, every such algebra provides an atom structure, i.e., a relational structure on its set of atoms. In the case of complete and atomic structure (e.g. finite algebras), the original algebra can be recovered from its atom structure by using the complex algebra construction. This gives a representation of relation algebras as the complex algebra of a certain relational structure. This property is of particular interest because storing the atom structure requires less space than the entire algebra. In this thesis I want to introduce and implement three structures representing atom structures of integral heterogeneous relation algebras, i.e., categorical versions of relation algebras. The first structure will simply embed a homogeneous atom structure of a relation algebra into the heterogeneous context. The second structure is obtained by splitting all symmetric idempotent relations. This new algebra is in almost all cases an heterogeneous structure having more objects than the original one. Finally, I will define two different union operations to combine two algebras into a single one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important problems in the theory of cellular automata (CA) is determining the proportion of cells in a specific state after a given number of time iterations. We approach this problem using patterns in preimage sets - that is, the set of blocks which iterate to the desired output. This allows us to construct a response curve - a relationship between the proportion of cells in state 1 after niterations as a function of the initial proportion. We derive response curve formulae for many two-dimensional deterministic CA rules with L-neighbourhood. For all remaining rules, we find experimental response curves. We also use preimage sets to classify surjective rules. In the last part of the thesis, we consider a special class of one-dimensional probabilistic CA rules. We find response surface formula for these rules and experimental response surfaces for all remaining rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalization to the BTK theory is developed based on the fact that the quasiparticle lifetime is finite as a result of the damping caused by the interactions. For this purpose, appropriate self-energy expressions and wave functions are inserted into the strong coupling version of the Bogoliubov equations and subsequently, the coherence factors are computed. By applying the suitable boundary conditions to the case of a normal-superconducting interface, the probability current densities for the Andreev reflection, the normal reflection, the transmission without branch crossing and the transmission with branch crossing are determined. Accordingly the electric current and the differential conductance curves are calculated numerically for Nb, Pb, and Pb0.9Bi0.1 alloy. The generalization of the BTK theory by including the phenomenological damping parameter is critically examined. The observed differences between our approach and the phenomenological approach are investigated by the numerical analysis.