4 resultados para Fault injection

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flow injection hydride generation direct current plasma atomic emission spectrometric (FI-HG-DCP-AES) method was developed for the determination of lead at ng.ml-l level. Potassium ferricyanide (K3Fe(CN)6) was used along with sodium tetrahydroborate(III) (NaBH4) to produce plumbane (PbH4) in an acid medium. The design of a gas-liquid separator (hydride generator) was tested and the parameters of the flow injection system were optimized to achieve a good detection limit and sample throughput. The technique developed gave a detection limit of 0.7 ng.ml-l(3ob). The precision at 20 ng.ml"* level was 1.6 % RSD with 1 1 measurements (n=l 1). Volume of sample loop was 500 |J.l. A sample throughput of 120 h"^ was achieved. The transition elements, Fe(II), FeOH), Cd(n), Co(II), Mn(n), Ni(II) and Zn(n) do not interfere in this method but 1 mg,l'l Cu(II) will suppress 50 % of the signal from a sample containing 20 ng.ml'l Pb. This method was successfully applied to determine lead in a calcium carbonate (CaC03) matrix of banded coral skeletons from Si-Chang Island in Thailand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of sample solvent composition and the injection volume, on the chromatographic peak profiles of two carbamate derivatives, methyl 2-benzimidazolecarbamate (MBC) and 3-butyl-2,4-dioxo[1,2-a]-s-triazinobenzimidazole (STB), were studied using reverse phase high performance liquid chromatograph. The study examined the effects of acetonitrile percentage in the sample solvent from 5 to 50%, effects of methanol percentage from 5 to 50%, effects of pH increase from 4.42 to 9.10, and effect of increasing buffer concentration from ° to 0.12M. The effects were studied at constant and increasing injection mass and at four injection volumes of 10, 50, 100 and 200 uL. The study demonstrated that the amount and the type of the organic solvents, the pH, and the buffer strength of the sample solution can have a pronounced effect on the peak heights, peak widths, and retention times of compounds analysed. MBC, which is capable of intramolecular hydrogen bonding and has no tendency to ionize, showed a predictable increase .in band broadening and a decrease in retention times at higher eluting strengths of the sample solvent. STB, which has a tendency to ionize or to strongly interact with the sample solvent, was influenced in various ways by the changes in ths sample solvent composition. The sample solvent effects became more pronounced as the injection volume increased and as the percentage of organic solvent in the sample solution became greater. The peak height increases for STB at increasing buffer concentrations became much more pronounced at higher analyte concentrations. It was shown that the widely accepted procedure of dissolving samples in the mobile phase does not yield the most efficient chromatograms. For that reason samples should be dissolved in the solutions with higher aqueous content than that of the mobile phase whenever possible. The results strongly recommend that all the samples and standards, regardless whether the standards are external or internal, be analysed at a constant sample composition and a constant injection volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow injection analysis (FIA) was applied to the determination of both chloride ion and mercury in water. Conventional FIA was employed for the chloride study. Investigations of the Fe3 +/Hg(SCN)2/CI-,450 nm spectrophotometric system for chloride determination led to the discovery of an absorbance in the 250-260 nm region when Hg(SCN)2 and CI- are combined in solution, in the absence of iron(III). Employing an in-house FIA system, absorbance observed at 254 nm exhibited a linear relation from essentially 0 - 2000 Jlg ml- 1 injected chloride. This linear range spanning three orders of magnitude is superior to the Fe3+/Hg(SCN)2/CI- system currently employed by laboratories worldwide. The detection limit obtainable with the proposed method was determin~d to be 0.16 Jlg ml- 1 and the relative standard deviation was determined to be 3.5 % over the concentration range of 0-200 Jig ml- 1. Other halogen ions were found to interfere with chloride determination at 254 nm whereas cations did not interfere. This system was successfully applied to the determination of chloride ion in laboratory water. Sequential injection (SI)-FIA was employed for mercury determination in water with the PSA Galahad mercury amalgamation, and Merlin mercury fluorescence detection systems. Initial mercury in air determinations involved injections of mercury saturated air directly into the Galahad whereas mercury in water determinations involved solution delivery via peristaltic pump to a gas/liquid separator, after reduction by stannous chloride. A series of changes were made to the internal hardware and valving systems of the Galahad mercury preconcentrator. Sequential injection solution delivery replaced the continuous peristaltic pump system and computer control was implemented to control and integrate all aspects of solution delivery, sample preconcentration and signal processing. Detection limits currently obtainable with this system are 0.1 ng ml-1 HgO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I - Fluorinated Compounds A method has been developed for the extraction, concentration, and determination of two unique fluorinated compounds from the sediments of Lake Ontario. These compounds originated from a common industrial landfill, and have been carried to Lake Ontario by the Niagara River. Sediment samples from the Mississauga basin of Lake Ontario have been evaluated for these compounds and a depositional trend was established. The sediments were extracted by accelerated solvent extraction (ASE) and then underwent clean-up, fractionation, solvent exchange, and were concentrated by reduction under nitrogen gas. The concentrated extracts were analyzed by gas chromatography - electron capture negative ionization - mass spectrometry. The depositional profile determined here is reflective of the operation of the landfill and shows that these compounds are still found at concentrations well above background levels. These increased levels have been attributed to physical disturbances of previously deposited contaminated sediments, and probable continued leaching from the dumpsite. Part II - Polycyclic Aromatic Hydrocarbons Gas chromatography/mass spectrometry is the most common method for the determination of polycyclic aromatic hydrocarbons (PAHs) from various matrices. Mass discrimination of high-boiling compounds in gas chromatographic methods is well known. The use of high-boiling injection solvents shows substantial increase in the response of late-eluting peaks. These solvents have an increased efficiently in the transfer of solutes from the injector to the analytical column. The effect of I-butanol, I-pentanol, cyclopentanol, I-hexanol, toluene and n-octane, as injection solvents, was studied. Higher-boiling solvents yield increased response for all PAHs. I -Hexanol is the best solvent, in terms of P AH response, but in this solvent P AHs were more susceptible to chromatographic problems such as peak splitting and tailing. Toluene was found to be the most forgiving solvent in terms of peak symmetry and response. It offered the smallest discrepancies in response, and symmetry over a wide range of initial column temperatures.